Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:359–86. https://doi.org/10.1002/ijc.29210.
Article
CAS
Google Scholar
Loizides-Mangold U. On the future of mass-spectrometry-based lipidomics. FEBS J. 2013;280(12):2817–29. https://doi.org/10.1111/febs.12202.
Article
CAS
PubMed
Google Scholar
Fhaner C, Liu S, Ji H, Simpson R, Reid G. Comprehensive lipidome profiling of isogenic primary and metastatic colon adenocarcinoma cell lines. Anal Chem. 2012;84(21):8917–26. https://doi.org/10.1021/ac302154g.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo X, Cheng C, Tan Z, Li N, Tang M, Yang L, Cao Y. Emerging roles of lipid metabolism in cancer metastasis. Mol Cancer. 2017;16(1):76. https://doi.org/10.1186/s12943-017-0646-3.
Dueck D, Chan M, Tran K, Wong J, Jay F, Littman C, et al. The modulation of choline phosphoglyceride metabolism in human colon cancer. Mol Cell Biochem. 1996;162(2):97–103. https://doi.org/10.1007/BF00227535.
Article
CAS
PubMed
Google Scholar
Bandu R, Mok H, Kim K. Phospholipids as cancer biomarkers: mass spectrometry-based analysis. Mass Spectrom Rev. 2016; https://doi.org/10.1002/mas.21510.
Braverman N, Moser A. Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta. 2012;1822(9):1442–52. https://doi.org/10.1016/j.bbadis.2012.05.008.
Article
CAS
PubMed
Google Scholar
Snyder F. The ether lipid trail: a historical perspective. Biochim Biophys Acta. 1999;1436(3):265–78. https://doi.org/10.1016/S0005-2760(98)00172-6.
Article
CAS
PubMed
Google Scholar
Han X. Lipidomics for studying metabolism. Nat Rev Endocrinol. 2016;12(11):668–79. https://doi.org/10.1038/nrendo.2016.98.
Article
CAS
PubMed
Google Scholar
Pourhoseingholi MA, Vahedi M, Baghestani AR. Burden of gastrointestinal cancer in Asia: an overview. Gastroenterol Hepatol Bed Bench. 2015;8(1):19–27.
PubMed
PubMed Central
Google Scholar
World Health Organization. Cancer. [Internet], (2017) [cited 28 Aug 2017]. Available from: http://www.who.int/mediacentre/factsheets/fs297/en/.
Yan G, Li L, Zhu B, Li Y. Lipidome in colorectal cancer. Oncotarget. 2016;7:33429–39. https://doi.org/10.18632/oncotarget.7960.
PubMed
PubMed Central
Google Scholar
Das V, Kalita J, Pal M. Predictive and prognostic biomarkers in colorectal cancer: a systematic review of recent advances and challenges. Biomed Pharmacother. 2017;87:8–19. https://doi.org/10.1016/j.biopha.2016.12.064.
Article
CAS
PubMed
Google Scholar
Yang K, Han X. Lipidomics: techniques, applications, and outcomes related to biomedical sciences. Trends Biochem Sci. 2016;41:954–69. https://doi.org/10.1016/j.tibs.2016.08.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perrotti F, Rosa C, Cicalini I, P Sacchetta P, Del Boccio GD, Genovesi D, Pieragostino D. Advances in lipidomics for cancer biomarkers discovery. Inter J Mol Sci. 2016;17(12):1992. https://doi.org/10.3390/ijms17121992.
Article
CAS
Google Scholar
Li M, Fan P, Wang Y. Lipidomics in health and diseases – beyond the analysis of lipids. Glycomics Lipidomics. 2015;5:1–15. https://doi.org/10.4172/2153-0637.1000126.
Google Scholar
Fahy E, Cotter D, Sud M, Subramaniam S. Lipid classification, structures and tools. Biochim Biophys Acta. 2011;1811(11):637–47. https://doi.org/10.1016/j.bbalip.2011.06.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brügger B. Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu Rev Biochem. 2014;83(1):79–98. https://doi.org/10.1146/annurev-biochem-060713-035324.
Article
PubMed
CAS
Google Scholar
Lipid Maps Lipidomics Gateway: Home [Internet]. Lipidmaps.org. (2017) [cited 20 May 2017]. Available from: http://www.lipidmaps.org.
Vance JE. Membrane lipid biosynthesis. Wiley Online Library, (2001). Available from: http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0001391/abstract.
Hossain M, Mineno K, Katafuchi T. Neuronal orphan G-protein coupled receptor proteins mediate Plasmalogens-induced activation of ERK and Akt signaling. PLoS One. 2016;11(3):1–14. https://doi.org/10.1371/journal.pone.0150846.
Google Scholar
Onodera T, Futai E, Kan E, Abe N, Uchida T, Kamio Y, Kaneko J. Phosphatidylethanolamine plasmalogen enhances the inhibiting effect of phosphatidylethanolamine on secretase activity. J Biochem. 2014;157(5):301–9. https://doi.org/10.1093/jb/mvu074.
Article
PubMed
CAS
Google Scholar
Maeba R, Nishimukai M, Sakasegawa S, Sugimori D, Hara H. Plasma/serum plasmalogens: methods of analysis and clinical significancee. Adv Clin Chem. 2015;70:31–91. https://doi.org/10.1016/bs.acc.2015.03.005.
Article
PubMed
Google Scholar
FDA. U S Food and Drug Administration Home Page [Internet]. Fda.gov. (2017) [cited 20 May 2017]. Available from: http://www.fda.gov.
Newton K, Newman W, Hill J. Review of biomarkers in colorectal cancer. Color Dis. 2011;14(1):3–17. https://doi.org/10.1111/j.1463-1318.2010.02439.x
Article
Google Scholar
Henry NL, Hayes DF. Cancer biomarkers. Mol Oncol. 2012;6:140–6. https://doi.org/10.1016/j.molonc.2012.01.010.
Nordberg G. Biomarkers of exposure, effects and susceptibility in humans and their application in studies of interactions among metals in China. Toxicol Lett. 2010;192(1):45–9. https://doi.org/10.1016/j.toxlet.2009.06.859.
Article
CAS
PubMed
Google Scholar
Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer. 2010;127(1):118–26. https://doi.org/10.1002/ijc.25007.
Article
CAS
PubMed
Google Scholar
Goossens N, Nakagawa S, Sun X, Hoshida Y. Cancer biomarker discovery and validation. Transl Cancer Res. 2015;4(3):256–69. https://doi.org/10.3978/j.issn.2218-676X.2015.06.04.
CAS
PubMed
PubMed Central
Google Scholar
Sideris M, Papagrigoriadis S. Molecular biomarkers and classification models in the evaluation of the prognosis of colorectal cancer. Anticancer Res. 2014;34(1):2061–8.
CAS
PubMed
Google Scholar
Li M, Yang L, Bai Y, Liu H. Analytical methods in lipidomics and their applications. Anal Chem. 2014;86(1):161–75. https://doi.org/10.1021/ac403554h.
Article
CAS
PubMed
Google Scholar
Zoeller R, Lake A, Nagan N, Gaposchkin D, Legner M, Lieberthal W. Plasmalogens as endogenous antioxidants: somatic cell mutants reveal the importance of the vinyl ether. Biochem J. 1999;338(3):769–76. https://doi.org/10.1042/bj3380769.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamashita S, Honjo A, Aruga M, Nakagawa K, Miyazawa T. Preparation of marine plasmalogen and selective identification of molecular species by LC-MS/MS. Journal of Oleo Science. 2014;63(5):423–30. https://doi.org/10.5650/jos.ess13188.
Article
CAS
PubMed
Google Scholar
Wallner S, Schmitz G. Plasmalogens the neglected regulatory and scavenging lipid species. Chem Phys Lipids. 2011;164:573–89. https://doi.org/10.1016/j.chemphyslip.2011.06.008.
Article
CAS
PubMed
Google Scholar
Hu C, Wang M, Han X. Shotgun lipidomics in substantiating lipid peroxidation in redox biology: methods and applications. Redox Biol. 2017;12:946–55. https://doi.org/10.1016/j.redox.2017.04.030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rintala J, Seemann R, Chandrasekaran K, Rosenberger TA, Chang L, Contreras MA, Rapoport S, Chang MCJ. 85 kDa cytosolic phospholipase A2 is a target for chronic lithium in rat brain. Neuroreport. 1999;10(18):3887–90. https://doi.org/10.1097/00001756-199912160-00030.
Article
CAS
PubMed
Google Scholar
Lohner K. Is the high prospensity of ethanolamine plasmalogens to form non-lamellar lipid structures manifested in the properties of biomembranes? Chem Phys Lipids. 1996;81(2):167–84. https://doi.org/10.1016/0009-3084(96)02580-7.
Article
CAS
PubMed
Google Scholar
Lohner K, Hermetter A, Paltauf F. Phase behavior of ethanolamine plasmalogen. Chem Phys Lipids. 1984;34(2):163–70. https://doi.org/10.1016/0009-3084(84)90041-0.
Article
Google Scholar
Han X, Gross RW. Nonmonotonic alterations in the fluorescence anisotropy of polar head group labeled fluorophores during the lamellar to hexagonal phase transition of phospholipids. Biophys J. 1992;63(2):309–16. https://doi.org/10.1016/S0006-3495(92)81616-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fuchs B. Analytical methods for (oxidized) plasmalogens: methodological aspects and applications. Free Radic Res. 2015;49(5):599–617. https://doi.org/10.3109/10715762.2014.999675.
Article
CAS
PubMed
Google Scholar
Nagan N, Zoeller R. Plasmalogens: biosynthesis and functions. Prog Lipid Res. 2001;40(3):199–229. https://doi.org/10.1016/S0163-7827(01)00003-0.
Article
CAS
PubMed
Google Scholar
Engelmann B. Plasmalogens: targets for oxidants and major lipophilic antioxidants. Biochem Soc Trans. 2004;32(1):147–50. https://doi.org/10.1042/bst0320147.
Article
CAS
PubMed
Google Scholar
Leßig J, Fuchs B. Plasmalogens in biological systems: their role in oxidative processes in biological membranes, their contribution to pathological processes and aging and plasmalogen analysis. Curr Med Chem. 2009;16(16):2021-41. http://dx.doi.org/10.2174/092986 0709788682164.
Otoki Y, Kato S, Kimura F, Furukawa K, Yamashita S, Arai H, et al. Accurate quantitation of choline and ethanolamine plasmalogen molecular species in human plasma by liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal. 2017;134:77–85. https://doi.org/10.1016/j.jpba.2016.11.019.
Article
CAS
PubMed
Google Scholar
Zhan Y, Wang L, Liu J, Ma K, Liu C, Zhang Y, Zou W. Choline Plasmalogens isolated from swine liver inhibit hepatoma cell proliferation associated with Caveolin-1/Akt signaling. PLoS One. 2013;8(10):eE77387. https://doi.org/10.1371/journal.pone.0077387.
Article
CAS
Google Scholar
Brites P, Mooyer P, El Mrabet L, Waterham H, Wanders R. Plasmalogens participate in very-long-chain fatty acid-induced pathology. Brain. 2008;132(2):482–92. https://doi.org/10.1093/brain/awn295.
Article
PubMed
Google Scholar
Honsho M, Abe Y, Fujiki Y. Plasmalogen biosynthesis is spatiotemporally regulated by sensing plasmalogens in the inner leaflet of plasma membranes. Sci Rep. 2017;7:43936. https://doi.org/10.1038/srep43936.
Article
PubMed
PubMed Central
Google Scholar
Brites P, Waterham H, Wanders R. Functions and biosynthesis of plasmalogens in health and disease. Biochim Biophys Acta. 2004;1636(2-3):219–31. https://doi.org/10.1016/j.bbalip.2003.12.010.
Article
CAS
PubMed
Google Scholar
Goldfine H. The appearance, disappearance and reappearance of plasmalogens in evolution. Prog Lipid Res. 2010;49(4):493–8. https://doi.org/10.1016/j.plipres.2010.07.003.
Article
CAS
PubMed
Google Scholar
Honsho M, Asaoku S, Fujiki Y. Posttranslational regulation of fatty acyl-CoA reductase 1, Far1, controls ether Glycerophospholipid synthesis. J Biol Chem. 2010;285(12):8537–42. https://doi.org/10.1074/jbc.M109.083311.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jurkowitz-Alexander MS, Hirashima Y, Horrocks LA. Coupled enzyme assays for phospholipase activities with plasmalogen substrates. Methods Enzymol. 1991;197:79–89. https://doi.org/10.1016/0076-6879(91)97135-L.
Article
CAS
PubMed
Google Scholar
Wu L, Pfeiffer D, Calhoon E, Madiai F, Marcucci G, Liu S, et al. Purification, identification, and cloning of Lysoplasmalogenase, the enzyme that catalyzes hydrolysis of the vinyl ether bond of Lysoplasmalogen. J Biol Chem. 2011;286(28):24916–30. https://doi.org/10.1074/jbc.M111.247163.
Murakami M, Kudo I. Phospholipase A2. J Biochem. 2002;131(3):285–92. https://doi.org/10.1093/oxfordjournals.jbchem.a003101.
Article
CAS
PubMed
Google Scholar
Mankidy R, Ahiahonu PW, Ma H, Ayasinghe JD, Ritchie SA, Khan MA, Su-Myat KK, Wood PL, Goodenowe DB. Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study. Lipids Health Dis. 2010;9:62. https://doi.org/10.1186/1476-511X-9-62.
Article
PubMed
PubMed Central
CAS
Google Scholar
André A, Juanéda P, Sébédio J, Chardigny J. Plasmalogen metabolism-related enzymes in rat brain during aging: influence of n-3 fatty acid intake. Biochimie. 2006;88(1):103–11. https://doi.org/10.1016/j.biochi.2005.06.010.
Article
PubMed
CAS
Google Scholar
Spector A, Yorek M. Membrane lipid composition and cellular function. J Lipid Res. 1985;26(9):1015–35.
CAS
PubMed
Google Scholar
Demopoulos C, Pinckard R, Hanahan D. Platelet-activating factor. Evidence for 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators). J Biol Chem. 1979;254(19):9355–8.
CAS
PubMed
Google Scholar
Fernández R, Garate J, Lage S, Terés S, Higuera M, Bestard-Escalas J, et al. Identification of biomarkers of necrosis in xenografts using imaging mass spectrometry. J Am Soc Mass Spectrom. 2015;27(2):244–54. https://doi.org/10.1007/s13361-015-1268-x.
Article
PubMed
CAS
Google Scholar
Broniec A, Klosinski R, Pawlak A, Wrona-Krol M, Thompson D, Sarna T. Interactions of plasmalogens and their diacyl analogs with singlet oxygen in selected model systems. Free Radic Biol Med. 2011;50(7):892–8. https://doi.org/10.1016/j.freeradbiomed.2011.01.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sindelar P, Guan Z, Dallner G, Ernster L. The protective role of plasmalogens in iron-induced lipid peroxidation. Free Radic Biol Med. 1999;26(3-4):318–24. https://doi.org/10.1016/S0891-5849(98)00221-4.
Article
CAS
PubMed
Google Scholar
Zemski Berry K, Murphy R. Free radical oxidation of plasmalogen glycerophosphocholine containing esterified docosahexaenoic acid: structure determination by mass spectrometry. Antioxid Redox Signal. 2005;7(1-2):157–69. https://doi.org/10.1089/ars.2005.7.157.
Article
CAS
PubMed
Google Scholar
Hahnel D, Huber T, Kurze V, Beyer K, Engelmann B. Contribution of copper binding to the inhibition of lipid oxidation by plasmalogen phospholipids. Biochem J. 1999;340(2):377–83. https://doi.org/10.1042/0264-6021:3400377.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fhaner C, Liu S, Zhou X, Reid G. Functional group selective derivatization and gas-phase fragmentation reactions of plasmalogen glycerophospholipids. Mass Spectrometry. 2013;2:S0015. https://doi.org/10.5702/massspectrometry.
Article
PubMed
PubMed Central
CAS
Google Scholar
Folch H, Less M, Stanley HA. A simple method for isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226:497–9. https://doi.org/10.1371/journal.pone.0020510.
CAS
PubMed
Google Scholar
Fuchs B, Süß R, Schiller J. An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res. 2010;49(4):450–75. https://doi.org/10.1016/j.plipres.2010.07.001.
Article
CAS
PubMed
Google Scholar
Nimptsch A, Fuchs B, Süß R, Zschörnig K, Jakop U, Göritz F, Schiller J, Müller K. A simple method to identify ether lipids in spermatozoa samples by MALDI-TOF mass spectrometry. Anal Bioanal Chem. 2013;405(21):6675–82. https://doi.org/10.1007/s00216-013-7147-z.
Article
CAS
PubMed
Google Scholar
Maeba R, Ueta N. Determination of choline and ethanolamine plasmalogens in human plasma by HPLC using radioactive triiodide (1-) ion (125I3−). Anal Biochem. 2004;331(1):169–76. https://doi.org/10.1016/j.ab.2004.05.030.
Article
CAS
PubMed
Google Scholar
Murphy E, Stephens R, Jurkowitz-Alexander M, Horrocks L. Acidic hydrolysis of plasmalogens followed by high-performance liquid chromatography. Lipids. 1993;28(6):565–8. https://doi.org/10.1007/BF02536090.
Article
CAS
PubMed
Google Scholar
Patton GM, Robins SJ. Separation and quantification of phospholipid classes by HPLC. Lipoproteins protocols. Methods Mol Biol. 1998;110:193–215.
CAS
PubMed
Google Scholar
Mawatari S, Okuma Y, Fujino T. Separation of intact plasmalogens and all other phospholipids by a single run of high-performance liquid chromatography. Anal Biochem. 2007;370(1):54–9. https://doi.org/10.1016/j.ab.2007.05.020.
Article
CAS
PubMed
Google Scholar
Busik JV, Reid GE, Lydic TA. Global analysis of retina lipids by complementary precursor ion and neutral loss mode tandem mass spectrometry. Methods Mol Biol. 2009;579:33–70. https://doi.org/10.1007/978-1-60761-322-0_3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wacker BK, Albert CJ, Ford BA, Ford DA. Strategies for the analysis of chlorinated lipids in biological systems. Free Radic Biol Med. 2013;59:92–9. https://doi.org/10.1016/j.freeradbiomed.2012.06.013.
Article
CAS
PubMed
Google Scholar
Otoki Y, Nakagawa K, Kato S, Miyazawa T. MS/MS and LC-MS/MS analysis of choline/ethanolamine plasmalogens via promotion of alkali metal adduct formation. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;1004:85-92.https://doi.org/10.1016/j.jchromb.2015.09.012.
Fuck B. Analytical methods for (oxidized) plasmalogens: methodological aspects and applications. Free Radic Res. 2014;49(5):599–617. https://doi.org/10.3109/10715762.2014.999675.
Google Scholar
Ritchie SA, Akita H, Takemasa I, Eguchi H, Pastural E, Nagano H, Monden M, Doki Y, Mori M, Jin W, Sajobi TT, Jayasinghe D, Chitou B, Yamazaki Y, Hite T, Goodenowe DB. Metabolic system alterations in pancreatic cancer patient serum: potential for early detection. BMC Cancer. 2013;13(416):1–17. https://doi.org/10.1186/1471-2407-13-416.
Google Scholar
Leßig J, Gey C, Süß R, Schiller J, Glander HJ, Arnhold J. Analysis of the lipid composition of human and boar spermatozoa by MALDI-TOF mass spectrometry, thin layer chromatography and 31P NMR spectroscopy. Comp Biochem Physiol B Biochem Mol Biol. 2004;137(2):265–77. https://doi.org/10.1016/j.cbpc.2003.12.001.
Article
PubMed
CAS
Google Scholar
Merchant TE, Minsky BD, Lauwers GY, Diamantis PM, Haida T, Glonek T. Esophageal cancer phospholipids correlated with histopathologic findings: a 31P NMR study. NMR Biomed. 1999;12(4):1-5. http://dx.doi.org/10.1002/nbm.1940060304.
Snyder F, Wood R. Alkyl and alk-1-enyl ethers of glycerol in lipids from normal and neoplastic human tissues. Cancer Res. 1969;29(1):251–7.
CAS
PubMed
Google Scholar
Howard BV, Morris HP, Bailey JM. Ether-lipids, −glycerol phosphate dehydrogenase and growth rate in tumors and cultured cells. Cancer Res. 1972;32(7):1533–8.
CAS
PubMed
Google Scholar
Albert DH, Anderson CE. Ether-linked glycerolipids in human brain tumors. Lipids. 1977;12(2):188–92.
Article
CAS
PubMed
Google Scholar
Roos DS, Choppin PW. Tumorigenicity of cell lines with altered lipid composition. Proc Natl Acad Sci U S A. 1984;81:7622–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Misra S, Ghosh A, Varticovski L. Naturally occurring ether linked phosphatidylcholine activates phosphatidylinositol 3-kinase and stimulates cell growth. J Cell Biochem. 1994;55(1):146–53. https://doi.org/10.1002/jcb.240550116.
Article
CAS
PubMed
Google Scholar
Benjamin DI, Cozzo A, Ji X, Roberts LS, Louie SM, Mulvihill MM, Luo K, Nomura DK. Ether lipid generating enzyme AGPS alters the balance of structural and signaling lipids to fuel cancer pathogenicity. Proc Natl Acad Sci U S A. 2013;110(37):14912–7. https://doi.org/10.1073/pnas.1310894110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piano V, Benjamin DI, Valente S, Nenci S, Mai A, Aliverti A, Nomura DK, Mattevi A. Discovery of inhibitors for the ether lipid-generating enzyme AGPS as anti-cancer agents. ACS Chem Biol. 2015;10(11):2589–97. https://doi.org/10.1021/acSchembio.5b00466.
Article
CAS
PubMed
PubMed Central
Google Scholar
Merchant T, Kasimos J, de Graaf P, Minsky B, Gierke L, Glonek T. Phospholipid profiles of human colon cancer using 31P magnetic resonance spectroscopy. Int J Color Dis. 1991;6(2):121–6. https://doi.org/10.1007/BF00300208.
Article
CAS
Google Scholar
Christen S, Hagen TM, Shigenaga MK, Ames BN. Chronic inflammation, mutation and cancer. In: Parsonnet J, editor. Microbes and malignancy: infection as a cause of human cancer. New York: Oxford University Press; 1999. p. 35–88.
Google Scholar
Gerbig S, Golf O, Balog J, Denes J, Baranyai Z, Zarand A, Raso E, Timar J, Takats Z. Analysis of colorectal adenocarcinoma tissue by desorption electrospray ionization mass spectrometric imaging. Anal Bioanal Chem. 2012;403:2315–25. https://doi.org/10.1007/s00216-012-5841-x.
Article
CAS
PubMed
Google Scholar
Jun L, Can-Qun L, Lei X, Hong Y. Plasma content variation and correlation of plasmalogen and GIS, TC and TPL in gastric carcinoma patients: a comparative study. Med Sci Monit Basic Res. 2015;21:157–60. https://doi.org/10.12659/MSMBR.893908.
Article
Google Scholar
Sugiura T, Fukuda T, Masuzawa Y, Waku K. Ether lysophospholipid-induced production of platelet-activating factor in human polymorphonuclear leukocytes. Biochim Biophys Acta. 1990;1047:223–32. https://doi.org/10.1016/0005-2760(90)90520-8.
Article
CAS
PubMed
Google Scholar
Schrakamp G, Schutgens RB, Wanders RJ, Heymans HSA, Tager JM, Bosch HVD. The cerebro-hepato-renal (Zellweger) syndrome. Impaired de novo biosynthesis of plasmalogens in cultured skin fibroblasts. Biochim Biophys Acta. 1985;833(1):170–4. https://doi.org/10.1016/0005-2760(85)90266-8.
Article
CAS
PubMed
Google Scholar
Patterson NH, Alabdulkarim B, Lazaris A, Thomas A, Marcinkiewicz MM, Gao ZH, Vermeulen PB, Chaurand P, Metrakos P. Assessment of pathological response to therapy using lipid mass spectrometry imaging. Sci Rep. 2016;6(36814). https://doi.org/10.1038/srep36814.
Lydic TA, Townsend S, Adda CG, Collins C, Mathivanan S, Reid GE. Rapid and comprehensive ‘shotgun’ lipidome profiling of colorectal cancer cell derived exosomes. Methods. 2015;87:83–95. https://doi.org/10.1016/j.ymeth.2015.04.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith R, Lespi P, Luca M, Bustos C, Marra F, Alaniz M, Marra C. A reliable biomarker derived from plasmalogens to evaluate malignancy and metastatic capacity of human cancers. Lipids. 2008;43(1):79–89. https://doi.org/10.1007/s11745-007-3133-6.
Article
CAS
PubMed
Google Scholar
Cífková E, Holcapek M, Lísa M, Vrána D, Gatek J, Melichar B. Determination of lipidomic diferences between human breast câncer and surrounding normal tissues using HILIC-HPLC/ESI-MS and multivariate data analysis. Anal Bioanal Chem. 2015;407:991–1002. https://doi.org/10.1007/s00216-014-8272-z.
Article
PubMed
CAS
Google Scholar
Chen X, Chen H, Dai M, Ai J, Li Y, Mahon B, Dai S, Deng Y. Plasma lipidomics profiling identified lipid biomarkers in distinguishing early-stage breast cancer from benign lesions. Oncotarget. 2016;7(24):36622–31.
PubMed
PubMed Central
Google Scholar
Hou Y, Li J, Xie H, Sun F, Yang K, Wang J, Ke C, Lou G, Li K. Differential plasma lipids profiling and lipid signatures as biomarkers in the early diagnosis of ovarian carcinoma using UPLC-MS. Metabolomics. 2016;12(18):1–12. https://doi.org/10.1007/s11306-015-0891-7.
CAS
Google Scholar
Siti HN, Kamisah Y, J Kamsiah J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vasc Pharmacol. 2015;71:40–56. https://doi.org/10.1016/j.vph.2015.03.005.
Article
CAS
Google Scholar
Blitterswijk WJV, Verheij M. Anticancer mechanisms and clinical application of alkylphospholipids. Biochim Biophys Acta. 2013;1831:663–74. https://doi.org/10.1016/j.bbalip.2012.10.008.
Article
PubMed
CAS
Google Scholar
Kostadinova A, Topouzova-Hristova T, Momchilova A, Tzoneva R, Berger MR. Antitumor lipids-structure, functions, and medical applications. Adv Protein Chem Struct Biol. 2015;101:27–66. https://doi.org/10.1016/bs.apcsb.2015.08.001.
Article
CAS
PubMed
Google Scholar
Lohmeyer M, Bittman R. Antitumor ether lipids and alkylphosphocholines. Drugs Future. 1994;19:1021–37.
Article
Google Scholar
Ríos-Marco P, Marco C, Gálvez X, Jiménez-López JM, Carrasco MP. Alkylphospholipids: na update on molecular mechanisms and clinical relevance. Biochim Biophys Acta. 2017;1859:1657–67. https://doi.org/10.1016/j.bbamem.2017.02.016.
Article
PubMed
CAS
Google Scholar
Shin J, Qualls MM, Boomer JA, Robarge J, Thompson DH. An efficient new route to plasmenyl-type lipids: synthesis and cytotoxicity of a plasmenylcholine analogue of the antitumor ether lipid ET-18-OMe. J Am Chem Soc. 2001;123:508–9. https://doi.org/10.1021/ja005522t.
Article
CAS
PubMed
Google Scholar
Bittman R, Qin D, Wong DA, Tigyi G, Samadder P, Arthur G. Synthesis and antitumor properties of a plasmalogen methyl ether analogue. Tetrahedron. 2001;57:4277–82. https://doi.org/10.1016/S0040-4020(01)00371-4.
Article
CAS
Google Scholar
Flasiński M, Hąc-Wydro K, Wydro P, Dynarowicz-Łątka P. Influence of platelet-activating factor, lyso-platelet-activating factor and edelfosine on Langmuir monolayers imitating plasma membranes of cell lines differing in susceptibility to anti-cancer treatment: the effect of plasmalogen level. J R Soc Interface. 2014;11:1–11. https://doi.org/10.1098/rsif.2013.1103.
Google Scholar
Chabot MC, Wykle RL, Modest EJ, Daniel LW. Correlation of ether lipid content of human leukemia cell lines and their susceptibility to 1-OOctadecyl-l-O-methyl-rac-glycero-S-phosphocholine. Cancer Res. 1989;49(16):4441–5.
CAS
PubMed
Google Scholar
Lin HJ, Wu PC, Ho JCI. The ether lipid tumour marker in human liver with hepatocellular carcinoma. Br J Cancer. 1980;41(2):320–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liesenfeld D, Grapov D, Fahrmann J, Salou M, Scherer D, Toth R, et al. Metabolomics and transcriptomics identify pathway differences between visceral and subcutaneous adipose tissue in colorectal cancer patients: the ColoCare study. Am J Clin Nutr. 2015;102(2):433–43. https://doi.org/10.3945/ajcn.114.103804.
Article
CAS
PubMed
PubMed Central
Google Scholar