Ahmad S, Anjum FM, Huma N, Sameen A, Zahoor T. Composition and physico-chemical characteristics of buffalo milk with particular emphasis on lipids, proteins, minerals, enzymes and vitamins. J Anim Pl Sci. 2013;23:62–74.
Google Scholar
Abbas G, Nadeem M, Abdullah M, Ilyas M. Effect of vitamin E on storage stability of sour cream butter made from sheep milk. Carpathian J Food Sci Technol. 2011;3(2):21–5.
CAS
Google Scholar
Mahmood A, Sumaira U. A comparative study on the physico-chemical parameters of milk samples collected from buffalo, cow, goat and sheep of Gujrat. Pakistan Pak J Nut. 2010;9(12):1192–7.
Article
CAS
Google Scholar
Talpur FN, Memon NN, Bhanger MI. Comparison of fatty acid and cholesterol content of Pakistani water buffalo breeds. Pak J Anal Environ Chem. 2007;8:15–20.
CAS
Google Scholar
Humma N, Sameen A, Zahoor T, Anjum M. Composition and physico-chemical characteristics of buffalo milk with particular emphasis on lipids, proteins, minerals, enzymes and vitamins. J Animal and Plant Sci. 2013;23:62–74.
Google Scholar
Borková M, Snášelová J. Possibilities of different animal milk detection in milk and dairy products – a review. Czech J Food Sci. 2005;2:41–50.
Google Scholar
Richmond HD. Dairy chemistry: a practical handbook for dairy chemists and others having control of dairies. Volume 1. USA: Cole Press; 2007. p. 34-42.
Anwar F, Qayyum HMA, Hussain AI, Iqbal S. Antioxidant activity of 100 and 80% methanol extracts from barley seeds (Hordeum vulgare L.): stabilization of sunflower oil. Grasas Aceites. 2010;61:237–43.
Article
CAS
Google Scholar
Nadeem M, Situ C, Abdulla M. Effect of olein fractions of milk fat on oxidative stability of ice cream. Int J Food Prop. 2015;18(4):735–45.
Article
CAS
Google Scholar
Deffense E. From organic chemistry to fat and oil chemistry. Oilseeds Fats Crops Lipids. 2009;16:14–24.
Google Scholar
Fox PF, McSweeney PLH. Dairy chemistry and biochemistry. 1st ed. Thomson Science, London: Blackie Academic and Professional; 1998.
Google Scholar
Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Griel AE, Etherton TD. Bioactive compounds in foods: their role in prevention of cardiovascular disease and cancer. Am J Med. 2002;113:71–88.
Article
Google Scholar
Scicchitano P, Cameli M, Maiello M, Modesti PA, Muiesan ML, Novo S, di Studio IG. Nutraceuticals and dyslipidaemia: beyond the common therapeutics. J Funct Foods. 2014;6:11–32.
Article
CAS
Google Scholar
Lopez C, Ollivon M. Triglycerides obtained by dry fractionation of milk fat 2. Thermal properties and polymorphic evolutions on heating. Chem Physi Lipids. 2009;159:1–12.
Article
CAS
Google Scholar
Van Aken GA, Ten Grotenhuis E, Van Iangevelde AJ, Schenk H. Composition and crystallization of milk fat fractions. J Ameri Oil Chem Soci. 1999;76:1323–31.
Article
Google Scholar
Lopez C, Bourgaux C, Lesieur P, Riaublanc A, Ollivon M. Milk fat and primary fractions obtained by dry fractionation. Chemical composition and crystallization properties. Chem Phys Lipids. 2006;144:17–33.
Article
CAS
Google Scholar
Lopez C, Lavigne F, Lesieur P, Bourgaux C, Ollivon M. Thermal and structural behavior of milk fat. Unstable species of anhydrous milk fat. J Dairy Sci. 2001;84:756–66.
Article
CAS
Google Scholar
Fatouh AE, Singh RK, Koechler PE, Mahram GA, El-Ghandour MA, Metwally AE. Chemical and thermal characteristics of buffalo butter oil fractions obtained by multistep dry fractionation. Lesben-Wiss U Technol. 2003;36:463–96.
Article
Google Scholar
Reddy SY. Improving plasticity of Milk fat for use in baking by fractionation. J Americ Oil Chemi Soci. 2010;87:493–7.
Article
Google Scholar
AOCS, editor. Official methods and recommended practices of the American oil chemists’ society. 4th ed. Champaign, IL, USA: AOCS; 1995.
Google Scholar
Singleton VL, Orthofer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999;299:152–78.
Article
CAS
Google Scholar
Nile SH, Khobragade CN. Antioxidant activity and flavonoid derivatives of Plumbago Zeylanica. J Nat Products. 2010;3:130–3.
CAS
Google Scholar
Sanchez-Moreno C. Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci Technol Int. 2002;8:121–37.
Article
CAS
Google Scholar
Adesegun SA, Elechi NA, Coker HAB. Antioxidant activities of methanolic extract of Sapium elliticum. Pak J Biol Sci. 2008;11:453–7.
Article
CAS
Google Scholar
Jang S, Xu Z. Lipophilic and hydrophilic antioxidants and their antioxidant activities in purple rice bran. J Agric Food Chem. 2009;57:858–62.
Article
CAS
Google Scholar
Pece A, Pintea A, Bele C, Muresan G, O’Coroian C. Determination of Vitamin A from Buffalo Milk Using HPLC Method. Opatija Croatia: 43rd Croatian and 3rd International Symposium on Agriculture; 2014. p. 763–765.
Naviglio D, Dellagreca M, Ruffo F, Andolfi A, Gallo M. Rapid analysis procedures for triglycerides and fatty acids as Pentyl and Phenethyl esters for the detection of butter adulteration using chromatographic techniques. J Food Qua. 2017:1–11.
International Union of Pure and Applied Chemistry (IUPAC). Standard Methods for the Analysis of Oils, Fats and Derivatives, 7th revised and enlarged ed., edited by C. Paquot and A. Hautfenne, Blackwell Scientific, London. 1987.
IUPAC. Standard methods for the analysis of oils and fats and derivatives. Toronto, Canada: Pergamon Press; 2006.
Google Scholar
Ahmad S, Nadeem M, Ayaz M, Jaspal MH. Effect of low-melting fractions of milk fat on lipolysis of cheddar cheese. J Food Process and Preserv. 2015;39:2516–22.
Article
CAS
Google Scholar
Shahidi F. Baileys’ industrial edible oil and fat products. 6th ed. NY: John Willey and Sons, Pub. Co; 2005.
Book
Google Scholar
Nadeem M, Ullah R. Improvement of the physical and oxidative stability characteristics of ice cream through interesterified Moringa oleifera oil. Pak J Scienti Ind Res Ser B: Biol Sci. 2016;59(1):38–43.
CAS
Google Scholar
Nadeem M, Imran M, Iqbal Z, Abbas N, Mahmud A. Enhancement of the oxidative stability of butter oil by blending with mango (Mangifera indical.) Kernel oil in ambient and accelerated oxidation. J Food Process Preserv. 2016. https://doi.org/10.1111/jfpp.12957.
Azeem MW, Nadeem M, Ahmad S. Stabilization of witnerized cottonseed oil through chia (Salvia hispanic L.) seed extract at ambient temperature. J Food Sci Technol. 2015;52:7191–9.
Article
CAS
Google Scholar
Mansson HL. Fatty acids in bovine milk fat. Food Nutr Res. 2008;52:10–34.
PubMed Central
Google Scholar
Palmquist DL, Lock AL, Shingfield KJ. Biosynthesis of conjugated linoleic acid in ruminants and humans. Adv Food Nutri Res. 2005;50:179–217.
Article
CAS
Google Scholar
Smiddy M, Huppertz T, van Ruth S. Triacylglycerol and melting profiles of milk fat from several species. Int Dairy J. 2012;24:64–9.
Article
CAS
Google Scholar
Zhou Q, Gao B, Zhang X, Xu Y, Shi H, Yu L. Chemical profiling of triacylglycerols and diacylglycerols in cow milk fat by ultra-performance convergence chromatography combined with a quadrupole time of-flight mass spectrometry. Food Chem. 2014;143:199–204.
Article
CAS
Google Scholar
Nadeem M, Zunnurain M, Baig HA. The effect of beta cyclodextrin on the removal of cholesterol from buffalo milk. PJSIR. Series B: Biological Sciences. 2017;60:91–4.
Google Scholar
Gunston FD. Palm Oil. In: Vegetable oils in food technology composition, properties and uses, vol. 1. 1st ed. Boca Raton: CRC press USA and Canada; 2002. p. 62–82.
Jeyarani T, Khan I, Khatoon S. Tans-free plastic shortenings from coconut stearin and palm stearin blends. Food Chem. 2009;114:270–5.
Article
CAS
Google Scholar
Corbett P. It is time for an oil change! Opportunities for high-oleic vegetables oils. Inform. 2003;14:480–1.
Google Scholar
Mensink RP, Katan MB. Effect of dietary trans-fatty acids on high-density and low density lipoprotein cholesterol levels in healthy subjects. J Clini Nutri. 1990;323:439–45.
CAS
Google Scholar
Chen S, Bobe G, Zimmerman S, Hammond EG. Physical and sensory properties of dairy products from cows with various milk fatty acids compositions. Deptt. of Food Science: Lowa State University; 2004.
Book
Google Scholar
Amer MA, Kupranycz DB, Baker BE. Physical and chemical characteristics of butterfat fractions obtained by crystallization from molten fat. J Ameri Oil Chem Society. 1985;62:1551–7.
Article
Google Scholar
Jensen RG. The Composition of Bovine Milk Lipids: January1995 to December 2000. J Dairy Sci. 2002;85:295–350.
Article
CAS
Google Scholar
Ghatak PK, Bandyopadhyay AK. Practical of diary chemistry. Kalyani Publishers, New Delhi. 2007:140–9.
Khanal RC. Dietary influence on conjugated linoleic acid content of Milk and consumer acceptability of Milk and cheese naturally enriched with conjugated linoleic acid. Ph. D. Dissertation: Utah State University, Logan, Utah, USA; 2004.
Google Scholar
Ip C, Banni S, Angioni E, Carta G, McGinley J, Thompson HJ, Barbano D, Bauman D. Conjugated linoleic acid-enriched butter fat alters mammary gland morphogenesis and reduces cancer risk in rats. J Nutri. 1999:2135–42.
Griinari JM, Bauman DE. Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. In: Advances in conjugated linoleic acid research. Champaign. IL: AOCS press; 1999. p. 180–200.
Google Scholar
Van Nieuwenhove C, Gonzalez S, Perez-Chaia A. Conjugated linoleic acid in buffalo (Bubalus bubalis) milk from Argentina. Milchwissenschaft. 2004;59:9–10.
Google Scholar
Han X, Lee FL, Zhang L, Guo M. Chemical composition of water buffalo milk and its low-fat symbiotic yogurt development. Funct Foods Health Dis. 2012;2:86–106.
Article
CAS
Google Scholar
Mandal S, Yadav S, Yadav S, Nema RK. Antioxidants: a review. J Chem Pharma Res. 2009;1:102–4.
Google Scholar
Maestri DM, Nepote V, Lamarque AL, Zygadlo JA. Natural products as antioxidants. In Imperato, F. (Ed). Phytochemistry: Adva in Res. 2006;4:105–35.
Google Scholar
Yanishlieva-Maslarova NV, Heinonen IM. Sources of natural antioxidants: vegetables, fruits, herbs, spices and teas. Antioxidants in food, practical applications. 2001:210–66.
Mathew S, Abraham ET. Studies on the antioxidant activities of cinnamon (cinnamonum verum) bank extracts, through various in vitro models. Food Chem. 2006;94:520–8.
Article
CAS
Google Scholar
Nadeem M, Abdullah M, Khalique A, Hussain I, Mahmud A, Mahmood T. The effect of Moringa oleifera leaf extract as antioxidant on stabilization of butter oil with modified fatty acid profile. J Agri Sci Technol. 2013;15:5.
Google Scholar
Khan IT, Nadeem M, Imran M, Ajmal M, Ayaz M, Khalique A. Antioxidant capacity and fatty acids characterization of heat treated cow and buffalo milk. Lipids Health Dis. 2017:1–13.
Nadeem M, Imran M, Taj I, Ajmal M, Junaid M. Omega-3 fatty acids, phenolic compounds and antioxidant characteristics of chia oil supplemented margarine. Lipids Health Dis. 2017;16:102.
Article
Google Scholar
Nadeem M, Mahmud A, Imran M, Khalique A. Enhancement of the oxidative stability of whey butter through almond (Prunis dulcis) peel extract. J Food Proc Preserv. 2014. https://doi.org/10.1111/jfpp.12265.
Rahman F, Nadeem M, Khan S, Ahmad S, Zahoor Y. Antioxidant activity of date palm fruit (Phoenix dactylifera L.) extract for oxidative stabilization of butter oil at ambient temperature. Pak J Scient Indus Res. 2015;58(2):59–64.
CAS
Google Scholar
Abeer M. Abd Elhamid, Mervet M. Elbayoumi. Effect of heat treatment and fermentation on bioactive behavior in yoghurt made from camel Milk. Americ J Food Sci Technol. 2017;5(3):109–16.
Article
Google Scholar
Erickson DR. Practical hand book of soybean processing and utilization. AOCS press. 1995.
Andino E, Daniel J. Production and processing of a functional yogurt fortified with microencapsulated omega-3 and vitamin E. 2011;LSU Master's Theses. 2900.
Batool M, Nadeem M, Imran M, et al. Impact of vitamin E and selenium on antioxidant capacity and lipid oxidation of cheddar cheese in accelerated ripening. Lipids Health Dis. 2018;17:79. https://doi.org/10.1186/s12944-018-0735-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chatha SAS, Hussain AI, Bajwa JR, Sherazi STH, Shaukat A. Wheat bran extracts: a potent source of natural antioxidants for the stabilization of canola oil. Grasas Aceites. 2011;62(2):190–7.
Article
CAS
Google Scholar
Frega N, Mozzon M, Servidio G, Lercker G. Studio della resistenza all’ossidazione forzata degli oli extra vergini medi- ante rancimat test. Riv Ital Sostanze Grasse. 1995;72:493–6.
CAS
Google Scholar
Mcginely L. Analysis and quality control for processing and processed fats. In: Rossell JB, Pritchard JLR, editors. Analysis of oilseeds, fats and fatty foods. NY: Else App Sci; 1991. p. 460–70.
Google Scholar
Reynhout G. The effect of temperature on the induction time of a stabilized oil. J Am Oil Chem Soc. 1991;68:983–4.
Article
CAS
Google Scholar
Anwar F, Hussain I, IqbalS, Bhanger MI, et al. Enhancement of the oxidative stability of somevegetable oils by blending with Moringa oleifera oil. Food Chem. 2007;103:1181–91.