Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112:2735–52.
Article
PubMed
Google Scholar
Han JC, Lawlor DA, Kimm SY. Childhood obesity. Lancet. 2010;375(9727):1737–48.
Article
PubMed
PubMed Central
Google Scholar
Malik VS, Willett WC, Hu FB. Global obesity: trends, risk factors and policy implications. Nature Reviews Endocrinol. 2013;9:13–27.
Article
Google Scholar
Kuklina EV, Tong X, George MG, Bansil P. Epidemiology and prevention of stroke: a worldwide perspective. Expert Review Neurotherapeutics. 2012;12(2):199–208.
Article
Google Scholar
Springer SC, Silverstein J, Copeland K. Management of type 2 diabetes mellitus in children and adolescents. Pediatrics. 2013;131:648–64.
Article
Google Scholar
Abete P, Napoli C, Santoro G. Age-related decrease in cardiac tolerance to oxidative stress. J Mol Cell Cardiol. 1999;31(1):227–36.
Article
CAS
PubMed
Google Scholar
Brinkley TE, Nicklas BJ, Kanaya AM. Plasma oxidized low-density lipoprotein levels and arterial stiffness in older adults: the health, aging, and body composition study. Hypertension. 2009;53(5):846–52.
Article
CAS
PubMed
Google Scholar
Gradinaru D, Borsa C, Ionescu C, Prada GI. Oxidized LDL and NO synthesis – biomarkers of endothelial dysfunction and ageing. Mech Ageing Dev. 2015;151:101–13.
Article
CAS
PubMed
Google Scholar
Hossain P, Kawar B, El Nahas M. Obesity and diabetes in the developing world–a growing challenge. N Engl J Med. 2007;356:213–5.
Article
CAS
PubMed
Google Scholar
Fezeu L, Balkau B, Kengne AP, Sobngwi E, Mbanya JC. Metabolic syndrome in a sub-Saharan African setting: central obesity may be the key determinant. Atherosclerosis. 2007;193:70–6.
Article
CAS
PubMed
Google Scholar
Ulasi II, Ijoma CK, Onodugo OD. A community-based study of hypertension and cardio-metabolic syndrome in semi-urban and rural communities in Nigeria. BMC Health Serv Res. 2010;10:71.
Article
PubMed
PubMed Central
Google Scholar
Hosseinpanah F, Barzin M, Sheikholeslami F, Azizi F. Effect of different obesity phenotypes on cardiovascular events in Tehran Lipid and Glucose Study (TLGS). Am J Cardiol. 2011;107:412–6.
Article
PubMed
Google Scholar
Harzallah F, Alberti H, Ben KF. The metabolic syndrome in an Arab population: a first look at the new International Diabetes Federation criteria. Diabet Med. 2006;23:441–4.
Article
CAS
PubMed
Google Scholar
Abdul-Rahim HF, Husseini A, Bjertness E, Giacaman R, Gordon NH. The metabolic syndrome in the West Bank population: an urban-rural comparison. Diabetes Care. 2001;24:275–9.
Article
CAS
PubMed
Google Scholar
Bener A, Zirie M, Musallam M, Khader YS, Al-Hamaq AO. Prevalence of metabolic syndrome according to Adult Treatment Panel III and International Diabetes Federation criteria: a population-based study. Metab Syndr Relat Disord. 2009;7:221–9.
Article
PubMed
Google Scholar
Sibai A. Prevalence and correlates of metabolic syndrome in an adult Lebanese population. CVD Prevention and Control. 2008;3:83–90.
Article
Google Scholar
Ervin B. Prevalence of Metabolic Syndrome Among Adults 20 Years of Age and Over, by Sex, Age, Race and Ethnicity, and Body Mass Index: United States, 2003–2006. Natl Health Stat Report. 2009;5:1–7.
Google Scholar
Grundy SM. Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol. 2008;28:629–36.
Article
CAS
PubMed
Google Scholar
Esposito K, Giugliano F, Martedì E, Feola G, Marfella R, et al. High proportions of erectile dysfunction in men with the metabolic syndrome. Diabetes Care. 2005;28:1201–3.
Article
PubMed
Google Scholar
Méndez-Sánchez N, Chavez-Tapia NC, Motola-Kuba D, Sanchez-Lara K, Ponciano-Rodríguez G, et al. Metabolic syndrome as a risk factor for gallstone disease. World J Gastroenterol. 2005;11:1653–7.
Article
PubMed
PubMed Central
Google Scholar
Ajayi AF, Akhigbe RE, Ajayi LO. Activation of Cardiac TNF-α In Altered Thyroid State-Induced Cardiometabolic Disorder. J Cardiovasc Disease Res. 2017;8(4):151–6.
Article
CAS
Google Scholar
Kelli HM, Kassas I, Lattouf OM. Cardio Metabolic Syndrome: A Global Epidemic. J Diabetes Metab. 2015;6:3.
Google Scholar
Castro JP, El-Atat FA, McFarlane SI, Aneja A, Sowers JR. Cardiometabolic syndrome: pathophysiology and treatment. Curr Hypertens Rep. 2003;5:393–401.
Article
PubMed
Google Scholar
Petersen KF, Dufour S, Savage DB, Bilz S, Solomon G, et al. The role of skeletal muscle IR in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci USA. 2007;104:12587–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abate N, Garg A, Peshock RM, Stray-Gundersen J, Adams-Huet B, Grundy SM. Relationship of generalized and regional adiposity to insulin sensitivity in men with NIDDM. Diabetes. 1996;45:1684–93.
Article
CAS
PubMed
Google Scholar
Pouliot MC, Despres JP, Nadeau A, et al. Visceral obesity in men. Associations with glucose tolerance, plasma insulin, and lipoprotein levels. Diabetes. 1992;41:826–34.
Article
CAS
PubMed
Google Scholar
Lewis GF, Uffelman KD, Szeto LW, Weller B, Steiner G. Interaction between FFAs and insulin in the acute control of very low density lipoprotein production in humans. J Clin Invest. 1995;95:158–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang YL, Hernandez-Ono A, Ko C, Yasunaga K, Huang LS, Ginsberg HN. Regulation of hepatic apolipoprotein B-lipoprotein assembly and secretion by the availability of fatty acids. I. Differential response to the delivery of fatty acids via albumin or remnant-like emulsion particles. J Biol Chem. 2004;279:19362–74.
Article
CAS
PubMed
Google Scholar
Mittendorfer B, Liem O, Patterson BW, Miles JM, Klein S. What does the measurement of wholebody fatty acid rate of appearance in plasma by using a fatty acid tracer really mean? Diabetes. 2003;52:1641–8.
Article
CAS
PubMed
Google Scholar
Mittendorfer B, Patterson BW, Klein S. Effect of sex and obesity on basal VLDL-triacylglycerol kinetics. Am J Clin Nutr. 2003;77:573–9.
Article
CAS
PubMed
Google Scholar
Steinberg HO, Tarshoby M, Monestel R, et al. Elevated circulating FFA levels impair endothelium-dependent vasodilation. J Clin Invest. 1997;100:1230–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perseghin G, Petersen K, Shulman GI. Cellular mechanism of IR: potential links with inflammation. Int J Obes Relat Metab Disord. 2003;27(Suppl 3):S6–11.
Article
CAS
PubMed
Google Scholar
Crespo J, Cayon A, Fernandez-Gil P, et al. Gene expression of tumor necrosis factor alpha and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients. Hepatology. 2001;34:1158–63.
Article
CAS
PubMed
Google Scholar
Park SH, Kim BI, Yun JW, et al. IR and C-reactive protein as independent risk factors for non-alcoholic fatty liver disease in non-obese Asian men. J Gastroenterol Hepatol. 2004;19:694–8.
Article
CAS
PubMed
Google Scholar
Baggiolini M, Loetscher P, Moser B. Interleukin-8 and the chemokine family. Int J Immunopharmacol. 1995;17:103–8.
Article
CAS
PubMed
Google Scholar
Christiansen T, Richelsen B, Bruun JM. Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects. Int J Obes (Lond). 2005;29:146–50.
Article
CAS
Google Scholar
Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med. 2001;7:947–53.
Article
CAS
PubMed
Google Scholar
Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8:1288–95.
Article
CAS
PubMed
Google Scholar
Abate N, Garg A, Peshock RM, Stray-Gundersen J, Grundy SM. Relationships of generalized and regional adiposity to insulin sensitivity in men. J Clin Invest. 1995;96:88–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ross R, Aru J, Freeman J, Hudson R, Janssen I. Abdominal adiposity and IR in obese men. Am J Physiol Endocrinol Metab. 2002;282:E657–63.
Article
CAS
PubMed
Google Scholar
Nielsen S, Guo Z, Johnson CM, Hensrud DD, Jensen MD. Splanchnic lipolysis in human obesity. J Clin Invest. 2004;113:1582–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Havel RJ, Kane JP, Balasse EO, Segel N, Basso LV. Splanchnic metabolism of FFAs and production of triglycerides of very low density lipoproteins in normotriglyceridemic and hypertriglyceridemic humans. J Clin Invest. 1970;49:2017–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis FM, Gallagher K. Epigenetic Mechanisms in Monocytes/Macrophages Regulate Inflammation in Cardiometabolic and Vascular Disease. Arterioscler Thromb Vasc Biol. 2019;39:00-00. DOI: https://doi.org/10.1161/ATVBAHA.118.312135.
Kirk EP, Klein S. Pathogenesis and Pathophysiology of the Cardiometabolic Syndrome. J Clin Hypertens (Greenwich). 2009;11(12):761–5.
Article
CAS
Google Scholar
Apel K, Hirt H. Reactive oxygen species: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 2004;55:373–99.
Article
CAS
PubMed
Google Scholar
Keshari AK, Farooqi H. Evaluation of the effect of hydrogen peroxide(H2O2) on haemoglobin and the protective effect of glycine” International J Sci Tecnhnoledge. 2014;2(2):36-41.
Gueteens G, De Boeck G, Highley M, Osterom AT, De Bruijn EA. Oxidative DNA damage: Biological significance and methods of analysis. Crit Rev Clin Lab Sci. 2002;39:331–457.
Article
Google Scholar
Martin TA, Harrison G, Mansel RE, Jiang WG. The role of the CD44/ezrin complex in cancer metastasis. Crit Rev Oncol Hematol. 2003;46:165–86.
Article
PubMed
Google Scholar
Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sánchez-Pérez P, Cadenas S, Lamas S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biology. 2015;6:183–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sack MN, Fyhrquist FY, Saijonmaa OJ, Fuster V, Kovacic JC. Basic Biology of Oxidative Stress and the Cardiovascular System. J Am Coll Cardiol. 2017;70:196–211.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee MY, Griendling KK. Redox signaling, vascular function, and hypertension. Antioxidants Redox Signaling. 2008;10(6):1045–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harris CM, Sanders SA, Massey V. Role of the flavin midpoint potential and NAD binding in determining NAD versus oxygen reactivity of xanthine oxidoreductase. J Biol Chem. 1999;274(8):4561–9.
Article
CAS
PubMed
Google Scholar
Landmesser U, Spiekermann S, Preuss C, et al. Angiotensin II induces endothelial xanthine oxidase activation: role for endothelial dysfunction in patients with coronary disease. Arterioscler Thromb Vasc Biol. 2007;27:943–8.
Article
CAS
PubMed
Google Scholar
Nauseef WM. Assembly of the phagocyte NADPH oxidase. Histochemistry and Cell Biology. 2004;122(4):277–91.
Article
CAS
PubMed
Google Scholar
Ando S, Kaibuchi K, Sasaki T, Hiraoka K, Nishiyama T, Mizuno T, Asada M, Nunoi H, Matsuda I, Matsuura Y. Post-translational processing of rac p21s is important both for their interaction with the GDP/GTP exchange proteins and for their activation of NADPH oxidase. Journal of Biological Chemistry. 1999;267(36):25709–13.
Article
Google Scholar
Diebold BA, Bokoch GM. Molecular basis for Rac2 regulation of phagocyte NADPH oxidase. Nature Immunology. 2001;2(3):211–5.
Article
CAS
PubMed
Google Scholar
Cave AC, Brewer AC, Narayanapanicker A, Ray R, Grieve DJ, Walker S. NADPH oxidases in cardiovascular health and disease. Antioxidan Redox Signaling. 2006;8(5-6):691–728.
Article
CAS
Google Scholar
Ide T, Tsutsui H, Hayashidani S, Kang D, Suematsu N, Nakamura K, Utsumi H, Hamasaki N, Takeshita A. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circulation Research. 2001;88(5):529–35.
Article
CAS
PubMed
Google Scholar
Valenti VE, de Abreu LC, Ferreira C and Saldiva PHN. Reactive Oxygen Species and Cardiovascular Diseases, Oxidative Stress and Diseases, Dr. Volodymyr Lushchak (Ed.), InTech, 2012. ISBN: 978-953-51-0552-7, Available from: http://www.intechopen.com/books/oxidative-stress-anddiseases/reactive-oxygen-species-and-cardiovascular-diseases.
Verhaar MC, Westerweel PE, van Zonneveld AJ, Rabelink TJ. Free radical production by dysfunctional eNOS. Heart. 2004;90(5):494–5 ISSN 1468-201X.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J. M, Shah A.M. Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol 2004;287(5):R1014–R1030.R1030.
Matsuzawa A, Ichijo H. Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxidants and Redox Signaling. 2005;7(3-4):472–81.
Article
CAS
PubMed
Google Scholar
Valenti VE, de Abreu LC, Ferreira C and Saldiva PHN. Reactive Oxygen Species and Cardiovascular Diseases, Oxidative Stress and Diseases, Dr. Volodymyr Lushchak (Ed.), 2012, ISBN: 978-953-51-0552-7, InTech, Available from: http://www.intechopen.com/books/oxidative-stress-anddiseases/reactive-oxygen-species-and-cardiovascular-diseases.
Münzel T, Camici GG, Maack C, Bonetti NR, Fuster V, Kovacic JC. Impact of Oxidative Stress on the Heart and Vasculature. J Am College Cardiol. 2017;70(2):212–29.
Article
CAS
Google Scholar
Freed JK, Gutterman DD. Mitochondrial reactive oxygen species and vascular function: less is more. Arterioscler Thromb Vasc Biol. 2013;33:673–5.
Article
CAS
PubMed
Google Scholar
Stocker R, Keaney JF Jr. Role of oxidative modifications in atherosclerosis. Physiol Rev. 2004;84:1381–478.
Article
CAS
PubMed
Google Scholar
Griendling KK, Sorescu D, Lassègue B, Ushio-Fukai M. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol. 2000;20:2175–83.
Article
CAS
PubMed
Google Scholar
Förstermann U. Nitric oxide and oxidative stress in vascular disease. Pflugers Archiv. 2010;459:923–39.
Article
PubMed
CAS
Google Scholar
Förstermann U, Münzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006;113:1708–14.
Article
PubMed
CAS
Google Scholar
Gryglewski RJ, Palmer RM, Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature. 1986;320:454–6.
Article
CAS
PubMed
Google Scholar
Beckman JS. Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol. 1996;9:836–44.
Article
CAS
PubMed
Google Scholar
Laursen JB, Somers M, Kurz S, et al. Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation. 2001;103:1282–8.
Article
CAS
PubMed
Google Scholar
Harrison DG, Chen W, Dikalov S, Li L. Regulation of endothelial cell tetrahydrobiopterin pathophysiological and therapeutic implications. Adv Pharmacol. 2010;60:107–32.
Article
CAS
PubMed
Google Scholar
Li H, Horke S, Förstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis. 2014;237:208–19.
Article
CAS
PubMed
Google Scholar
Schiffrin EL. Remodeling of resistance arteries in essential hypertension and effects of antihypertensive treatment. Am J Hypertension. 2004;17(12):1192–200.
Article
CAS
Google Scholar
Korsgaard N, Aalkjaer C, Heagerty AM, Izzard AS, Mulvany MJ. Histology of subcutaneous small arteries from patients with essential hypertension. Hypertension. 1993;22(4):523–6.
Article
CAS
PubMed
Google Scholar
Rizzoni D, Porteri E, Guefi D, Piccoli A, Castellano M, Pasini G, Muiesan ML, Mulvany MJ, Rosei EA. Cellular hypertrophy in subcutaneous small arteries of patients with renovascular hypertension. Hypertension. 2000;35(4):931–5.
Article
CAS
PubMed
Google Scholar
Tribble DL, Gong EL, Leeuwenburgh C. Fatty streak formation in fat-fed mice expressing human copper-zinc superoxide dismutase. Arterioscler Thromb Vasc Biol. 1997;17:1734–40.
Article
CAS
PubMed
Google Scholar
Sentman ML, Brännstrom T, Westerlund S. Extracellular superoxide dismutase deficiency and atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 2001;21:1477–82.
Article
CAS
PubMed
Google Scholar
Yang H, Roberts LJ, Shi MJ. Retardation of atherosclerosis by overexpression of catalase or both Cu/Zn-superoxide dismutase and catalase in mice lacking apolipoprotein E. Circ Res. 2004;95:1075–81.
Article
CAS
PubMed
Google Scholar
Fukai T, Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal. 2011;15:1583–606.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Griendling KK, Dikalova A, Owens GK, Taylor WR. Vascular hypertrophy in angiotensin II-induced hypertension is mediated by vascular smooth muscle cell-derived H2O2. Hypertension. 2005;46:732–7.
Article
CAS
PubMed
Google Scholar
Lewis P, Stefanovic N, Pete J. Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice. Circulation. 2007;115:2178–87.
Article
CAS
PubMed
Google Scholar
Torzewski M, Ochsenhirt V, Kleschyov AL. Deficiency of glutathione peroxidase-1 accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2007;27:850–7.
Article
CAS
PubMed
Google Scholar
Yoshida T, Maulik N, Engelman RM. Glutathione peroxidase knockout mice are susceptible to myocardial ischemia reperfusion injury. Circulation. 1997;96:II216–20.
Google Scholar
Blankenberg S, Rupprecht HJ, Bickel C. AtheroGene Investigators. Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N Engl J Med. 2003;349:1605–13.
Article
CAS
PubMed
Google Scholar
Guo Z, Ran Q, Roberts LJ. Suppression of atherogenesis by overexpression of glutathione peroxidase-4 in apolipoprotein E-deficient mice. Free Radic Biol Med. 2008;44:343–52.
Article
CAS
PubMed
Google Scholar
Witte I, Foerstermann U, Devarajan A, Reddy ST, Horke S. Protectors or traitors: the roles of PON2 and PON3 in atherosclerosis and cancer. J Lipids. 2012;2012:342806.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang Y, Wu Z, Riwanto M. Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex. J Clin Invest. 2013;123:3815–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horke S, Witte I, Wilgenbus P, Krüger M, Strand D, Förstermann U. Paraoxonase-2 reduces oxidative stress in vascular cells and decreases endoplasmic reticulum stress-induced caspase activation. Circulation. 2007;115:2055–64.
Article
CAS
PubMed
Google Scholar
Ng CJ, Bourquard N, Grijalva V. Paraoxonase-2 deficiency aggravates atherosclerosis in mice despite lower apolipoprotein-B containing lipoproteins: anti-atherogenic role for paraoxonase-2. J Biol Chem. 2006;281:29491–500.
Article
CAS
PubMed
Google Scholar
Schweikert EM, Devarajan A, Witte I. PON3 is upregulated in cancer tissues and protects against mitochondrial superoxide-mediated cell death. Cell Death Differ. 2012;19:1549–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shih DM, Xia YR, Wang XP. Decreased obesity and atherosclerosis in human paraoxonase 3 transgenic mice. Circ Res. 2007;100:1200–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marsillach J, Camps J, Beltran-Debón R. Immunohistochemical analysis of paraoxonases-1 and 3 in human atheromatous plaques. Eur J Clin Invest. 2011;41:308–14.
Article
CAS
PubMed
Google Scholar
Stocker R, Perrella MA. Heme oxygenase-1: a novel drug target for atherosclerotic diseases? Circulation. 2006;114:2178–89.
Article
CAS
PubMed
Google Scholar
Taille C, El-Benna J, Lanone S. Induction of heme oxygenase-1 inhibits NAD(P) H oxidase activity by down-regulating cytochrome b558 expression via the reduction of heme availability. J Biol Chem. 2004;279:28681–8.
Article
CAS
PubMed
Google Scholar
Jiang F, Roberts SJ. Datla Sr., Dusting GJ. NO modulates NADPH oxidase function via heme oxygenase-1 in human endothelial cells. Hypertension. 2006;48:950–7.
Article
CAS
PubMed
Google Scholar
Hilgers RH, Kundumani-Sridharan V, Subramani J. Thioredoxin reverses age related hypertension by chronically improving vascular redox and restoring eNOS function. Sci Transl Med. 2017;9:eaaf6094.
Article
PubMed
PubMed Central
CAS
Google Scholar
May JM. How does ascorbic acid prevent endothelial dysfunction? Free Radic Biol Med. 2000;28:1421–9.
Article
CAS
PubMed
Google Scholar
Heller R, Unbehaun A, Schellenberg B, Mayer B, Werner-Felmayer G, Werner ER. L-Ascorbic acid potentiates endothelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin. J Biol Chem. 2001;276:40–7.
Article
CAS
PubMed
Google Scholar
Wallerath T, Deckert G, Ternes T. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation. 2002;106:1652–8.
Article
CAS
PubMed
Google Scholar
Wallerath T, Li H, Gödtel-Ambrust U, Schwarz PM, Förstermann U. A blend of polyphenolic compounds explains the stimulatory effect of red wine on human endothelial NO synthase. Nitric Oxide. 2005;12:97–104.
Article
CAS
PubMed
Google Scholar
Agarwal A, Sekhon LH. Oxidative stress and antioxidants for idiopathic oligoasthenoteratospermia: Is it justified? Indian J Urol. 2011;27:74–85.
Article
PubMed
PubMed Central
Google Scholar
Agarwal A, Saleh RA. Role of oxidants in male infertility: rationale, significance, and treatment. Urol Clin North Am. 2002;29:817–27.
Article
PubMed
Google Scholar
Griveau JF, Dumont E, Renard B, Callegari JP, Lannou D. Reactive oxygen species, lipid peroxidation and enzymatic defense systems in human spermatozoa. J Reprod Fertil. 1995;103:17–26.
Article
CAS
PubMed
Google Scholar
Hool L. C, Corry B. Redox control of calcium channels: from mechanisms to therapeutic opportunities. Antioxidant and Redox Signal 2007; 4:409–435.
Cherednichenko G, Zima AV, Feng W, Schaefer S, Blatter LA, Pessah IN. NADH oxidase activity of rat cardiac sarcoplasmic reticulum regulates calcium induced calcium release. Circulation Research. 2004;94(4):478–86.
Article
CAS
PubMed
Google Scholar
Sanchez G, Escobar M, Pedrozo Z, Macho P, Domenech R, Hartel S. Exercise and tachycardia increase NADPH oxidase and ryanodine receptor-2 activity: possible role in cardioprotection. Cardiovascular Research. 2008;77(2):380–6.
Article
CAS
PubMed
Google Scholar
Yi XY, Li VX, Zhang F, Yi F, Matson DR, Jiang MT. Characteristics and actions of NAD(P) H oxidase on the sarcoplasmic reticulum of coronary artery smooth muscle. Am J Physiol Heart Circulatory Physiol. 2006;290(3):H1136–44.
Article
CAS
Google Scholar
Zeng Q, Zhou Q, Yao F, O’Rourke S. T, Sun C. Endothelin-1 regulates cardiac Ltype calcium channels via NAD(P) H oxidase-derived superoxide. J Pharmacol Experimental Therapeutics 2006; 326(3): 732–738.
Montague CT, O’Rahilly S. The perils of portliness: causes and consequences of visceral adiposity. Diabetes. 2000;49:883–8.
Article
CAS
PubMed
Google Scholar
Matsuzawa Y, Funahashi T, Nakamura T. Molecular mechanism of metabolic syndrome X: Contribution of adipocytokines adipocyte-derived bioactive substances. Ann. N. Y.Acad Sci. 1999;892:146–54.
Article
CAS
PubMed
Google Scholar
Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell. 2001;104:531–43.
Article
CAS
PubMed
Google Scholar
Kahn BB, Flier JS. Obesity and IR. J. Clin. Invest. 2000;106:473–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114:1752–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Devaraj S, Wang-Polagruto J, Polagruto J, Keen CL, Jialal I. High-fat, energy-dense, fast-food-style breakfast results in an increase in oxidative stress in metabolic syndrome. Metab Clin Exp. 2008;57:867–70.
Article
CAS
PubMed
Google Scholar
Johnson JB, Summer W, Cutler RG, Martin B, Hyun D-H, Dixit VD, Pearson M, Nassar M, Telljohann R, Tellejohan R, Maudsley S, Carlson O, John S, Laub DR, Mattson MP. Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radic Biol Med. 2007;42:665–74.
Article
CAS
PubMed
Google Scholar
Hattori Y, Akimoto K, Gross SS, Hattori S, Kasai K. Angiotensin-II-induced oxidative stress elicits hypoadiponectinaemia in rats. Diabetologia. 2005;48:1066–74.
Article
CAS
PubMed
Google Scholar
Soares AF, Guichardant M, Cozzone D, Bernoud-Hubac N, Bouzaidi-Tiali N, Lagarde M, Geloen A. Effects of oxidative stress on adiponectin secretion and lactate production in 3T3-L1 adipocytes. Free Radic Biol Med. 2005;38:882–9.
Article
CAS
PubMed
Google Scholar
Chen B, Wei J, Wang W, Cui G, Zhao Y, Zhu X, Zhu M, Guo W, Yu J. Identification of signaling pathways involved in aberrant production of adipokines in adipocytes undergoing oxidative stress. Arch Med Res. 2009;40:241–8.
Article
CAS
PubMed
Google Scholar
Sakurai T, Izawa T, Kizaki T, Ogasawara JE, Shirato K, Imaizumi K, Takahashi K, Ishida H, Ohno H. Exercise training decreases expression of inflammation-related adipokines through reduction of oxidative stress in rat white adipose tissue. Biochem Biophys Res Commun. 2009;379:605–9.
Article
CAS
PubMed
Google Scholar
Shimomura I. Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nat. Med. 1996;2:800–3.
Article
CAS
PubMed
Google Scholar
Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked IR. Science. 1993;259:87–91.
Article
CAS
PubMed
Google Scholar
Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced IR in mice lacking TNF-alpha function. Nature. 1997;389:610–4.
Article
CAS
PubMed
Google Scholar
Fruebis J, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl. Acad. Sci. U. S. A. 2001;98:2005–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamauchi T, et al. The fat-derived hormone adiponectin reverses IR associated with both lipoatrophy and obesity. Nat. Med. 2001;7:941–6.
Article
CAS
PubMed
Google Scholar
Maeda N, et al. Diet-induced IR in mice lacking adiponectin/ACRP30. Nat. Med. 2002;8:731–7.
Article
CAS
PubMed
Google Scholar
Okamoto Y, et al. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation. 2002;106:2767–70.
Article
CAS
PubMed
Google Scholar
Matsuda M, et al. Role of adiponectin in preventing vascular stenosis. The missing link of adipovascular axis. J. Biol. Chem. 2002;277:37487–91.
Article
CAS
PubMed
Google Scholar
Yamauchi T, et al. Globular adiponectin protected ob/ob mice from diabetes and apoE-deficient mice from atherosclerosis. J. Biol. Chem. 2003;278:2461–8.
Article
CAS
PubMed
Google Scholar
Zarrouki B, Soares AF, Guichardant M, Lagarde M, Geloen A. The lipid peroxidation end-product 4-HNE induces COX-2 expression through p38MAPK activation in 3T3-L1 adipose cell. FEBS Lett. 2007;581:2394–400.
Article
CAS
PubMed
Google Scholar
Wang Z, Dou X, Gu D, Shen C, Yao T, Nguyen V, Braunschweig C, Song Z. 4- Hydroxynonenal differentially regulates adiponectin gene expression and secretion via activating PPARγ and accelerating ubiquitin-proteasome degradation. Mol Cell Endocrinol. 2012;349:222–31.
Article
CAS
PubMed
Google Scholar
Cassis LA, Police SB, Yiannikouris F, Thatcher SE. Local adipose tissue renin-angiotensin system. Curr Hypertens Rep. 2008;10:93–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dandona P, Dhindsa S, Ghanim H, Chaudhuri A. Angiotensin II and inflammation: the effect of angiotensinconverting enzyme inhibition and angiotensin II receptor blockade. J Hum Hypertens. 2007;21:20–7.
Article
CAS
PubMed
Google Scholar
Koh KK, Oh PC, Quon MJ. Does reversal of oxidative stress and inflammation provide vascular protection? Cardiovasc Res. 2009;81:649–59.
Article
CAS
PubMed
Google Scholar
Skultetyova D, Filipova S, Riecansky I, Skultety J. The role of angiotensin type 1 receptor in inflammation and endothelial dysfunction. Recent Pat Cardiovasc Drug Discov. 2007;2:23–7.
Article
CAS
PubMed
Google Scholar
Otani H. Oxidative Stress as Pathogenesis of Cardiovascular Risk Associated with Metabolic Syndrome. Antioxidants Redox Signaling. 2011;15(7):1911–26.
Article
CAS
PubMed
Google Scholar
Bendall JK, Alp NJ, Warrick N, Cai S, Adlam D, Rockett K, Yokoyama M, Kawashima S, Channon KM. Stoichiometric relationships between endothelial tetrahydrobiopterin, endothelial NO synthase (eNOS) activity, and eNOS coupling in vivo: insights from transgenic mice with endothelial-targeted GTP cyclohydrolase 1 and eNOS overexpression. Circ Res. 2005;97:864–71.
Article
CAS
PubMed
Google Scholar
Schulz E, Jansen T, Wenzel P, Daiber A, Munzel T. Nitric oxide, tetrahydrobiopterin, oxidative stress, and endothelial dysfunction in hypertension. Antioxid Redox Signal. 2008;10:1115–26.
Article
CAS
PubMed
Google Scholar
Akhigbe R, Ajayi A. Testicular toxicity following chronic codeine administration is via oxidative DNA damage and up-regulation of NO/TNF-α and caspase 3 activities. PLoS ONE. 2020;15(3):e0224052.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dickhout JG, Hossain GS, Pozza LM, Zhou J, Lhotak S, Austin RC. Peroxynitrite causes endoplasmic reticulum stress and apoptosis in human vascular endothelium: implications in atherogenesis. Arterioscler Thromb Vasc Biol. 2005;25:2623–9.
Article
CAS
PubMed
Google Scholar
Duda DG, Fukumura D, Jain RK. Role of eNOS in neovascularization: NO for endothelial progenitor cells. Trends Mol Med. 2004;10:143–5.
Article
CAS
PubMed
Google Scholar
Luque Contreras D, Vargas Robles H, Romo E, Rios A, Escalante B. The role of nitric oxide in the post-ischemic revascularization process. Pharmacol Ther. 2006;112:553–63.
Article
CAS
PubMed
Google Scholar
Archuleta TL, Lemieux AM, Saengsirisuwan V, Teachey MK, Lindborg KA, Kim JS, Henriksen EJ. Oxidant stress-induced loss of IRS-1 and IRS-2 proteins in rat skeletal muscle: role of p38 MAPK. Free Radic Biol Med. 2009;47:1486–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamori Y, Sakaue H, Kasuga M. RBP4, an unexpected adipokine. Nat Med. 2006;12:30–1; discussion 31.
Article
CAS
PubMed
Google Scholar
Muoio DM, Newgard CB. Metabolism: A is for adipokine. Nature. 2005;436:337–8.
Article
CAS
PubMed
Google Scholar
Beckman JS, Crow JP. Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem. Soc. Trans. 1993;21:330–4.
Article
CAS
PubMed
Google Scholar
Beckman JS, Beckman TW, Chen J. Apparent hydroxyl radical production of peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA. 1990;87:1620–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manrique C, Lastra G, Gardner M, Sowers JR. The Renin Angiotensin Aldosterone System in Hypertension: Roles of IR and Oxidative Stress. Med Clin North Am. 2009;93(3):569–82. https://doi.org/10.1016/j.mcna.2009.02.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol. 2005;25:29–38.
Article
CAS
PubMed
Google Scholar
Sydow K, Munzel T. ADMA and oxidative stress. Atheroscler Suppl. 2003;4:41–51.
Article
CAS
PubMed
Google Scholar
Böger RH, Sydow K, Borlak J, Thum T, Lenzen H, Schubert B, Tsikas D, Bode-Böger SM. LDL cholesterol upregulates synthesis of asymmetrical dimethylarginine in human endothelial cells: involvement of S-adenosylmethionine-dependent methyltransferases. Circ Res. 2000;87:99–105.
Article
PubMed
Google Scholar
Zou MH, Shi C, Cohen RA. Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J Clin Invest. 2002;109:817–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Massiera F, Bloch-Faure M, Ceiler D, et al. Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. FASEB J. 2001;15:2727–9.
Article
CAS
PubMed
Google Scholar
Cooper SA, Whaley-Connell A, Habibi J, et al. Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular IR. Am J Physiol Heart Circ Physiol. 2007;293:H2009–23.
Article
CAS
PubMed
Google Scholar
Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol, Cell Physiol. 2007;292:C82–97.
Article
CAS
Google Scholar
Johar S, Cave AC, Narayanapanicker A, et al. Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J. 2006;20:1546–8.
Article
CAS
PubMed
Google Scholar
Beswick RA, Zhang H, Marable D, et al. Long-term antioxidant administration attenuates mineralocorticoid hypertension and renal inflammatory response. Hypertension. 2001;37:781–6.
Article
CAS
PubMed
Google Scholar
CS, Cheng ZJ, Tikkanen I, et al. Endothelial dysfunction and xanthine oxidoreductase activity in rats with human renin and angiotensinogen genes. Hypertension. 2001;37:414–8.
Article
Google Scholar
Laakso J, Mervaala E, Himberg JJ, et al. Increased kidney xanthine oxidoreductase activity in saltinduced experimental hypertension. Hypertension. 1998;32:902–6.
Article
CAS
PubMed
Google Scholar
Griendling KK, Minieri CA, Ollerenshaw JD, et al. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994;74:1141–8.
Article
CAS
PubMed
Google Scholar
Brandes RP. Triggering mitochondrial radical release: a new function for NADPH oxidases. Hypertension. 2005;45:847–8.
Article
CAS
PubMed
Google Scholar
Kimura S, Zhang GX, Nishiyama A, Shokoji T, Yao L, Fan YY, Rahman M, Abe Y. Mitochondria-derived reactive oxygen species and vascular MAP kinases: comparison of angiotensin II and diazoxide. Hypertension. 2005;45:438–44.
Article
CAS
PubMed
Google Scholar
Reinehr R, Becker S, Eberle A, Grether-Beck S, Haussinger D. Involvement of NADPH oxidase isoforms and Src family kinases in CD95-dependent hepatocyte apoptosis. J Biol Chem. 2005;280:27179–94.
Article
CAS
PubMed
Google Scholar
Touyz RM, Yao G, Schiffrin EL. c-Src induces phosphorylation and translocation of p47phox: role in superoxide generation by angiotensin II in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2003;23:981–7.
Article
CAS
PubMed
Google Scholar
Kroller-Schon S, Steven S, Kossmann S, Scholz A, Daub S, Oelze M, Xia N, Hausding M, Mikhed Y, Zinßius E, Mader M, Stamm P, Treiber N, Scharffetter-Kochanek K, Li H, Schulz E, Wenzel P, Munzel T, Daiber A. Molecular Mechanisms of the Crosstalk Between Mitochondria and NADPH Oxidase Through Reactive Oxygen Species—Studies in White Blood Cells and in Animal Models. Antioxid. Redox Signal. 2014;20:247–66.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ballinger SW, Patterson C, Knight-Lozano CA, et al. Mitochondrial integrity and function in atherogenesis. Circulation. 2002;106:544–9.
Article
CAS
PubMed
Google Scholar
Garelnabi M, Kakumanu S, Litvinov D. Role of Oxidized Lipids in Atherosclerosis. In: Oxidative Stress and Diseases. Ed: Dr. Volodymyr Lushchak. ISBN: 978-953-51-0552-7. InTech. Available from: http://www.intechopen.com/books/oxidative-stress-and-diseases/role-of-oxidized-lipids-in-atherosclerosis.
Collot-Teixeira S, Martin J, McDermott-Roe C, Poston R, McGregor JL. CD36 and macrophages in atherosclerosis. Cardiovasc Res. 2007;75:468–77.
Article
CAS
PubMed
Google Scholar
Rahaman SO, Lennon DJ, Febbraio M, Podrez EA, Hazen SL, Silverstein RL. A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metab. 2006;4:211–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thorne RF, Mhaidat NM, Ralston KJ, Burns GF. CD36 is a receptor for oxidized high density lipoprotein: implications for the development of atherosclerosis. FEBS Lett. 2007;581:1227–32.
Article
CAS
PubMed
Google Scholar
Moore KJ, Freeman MW. Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler Thromb Vasc Biol. 2006;26(8):1702–11.
Article
CAS
PubMed
Google Scholar
Alcouffe J, Caspar-Bauguil S, Garcia V, Salvayre R, Thomsen M, Benoist H. Oxidized low density lipoproteins induce apoptosis in PHA-activated peripheral blood mononuclear cells and in the Jurkat T-cell line. J Lipid Res. 1999;40(7):1200–10.
Article
CAS
PubMed
Google Scholar
Coffey MD, Cole RA, Colles SM, Chisolm GM. In vitro cell injury by oxidized low density lipoprotein involves lipid hydroperoxide-induced formation of alkoxyl, lipid, and peroxyl radicals. J Clin Invest. 1995;96:1866–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brand K, Eisele T, Kreusel U, Page M, Page S, Haas M, Gerling A, Kaltschmidt C, Neumann FJ, Mackman N, Baeurele PA, Walli AK, Neumeier D. Dysregulation of monocytic nuclear factor-kappa B by oxidized low-density lipoprotein. Arterioscler Thromb Vasc Biol. 1997;17:1901–9.
Article
CAS
PubMed
Google Scholar
Eligini S, Brambilla M, Banfi C, Camera M, Sironi L, Barbieri SS, Auwerx J, Tremoli E. Colli S. Oxidized phospholipids inhibit cyclooxygenase-2 in human macrophages via nuclear factor-kappaB/IkappaB-and ERK2-dependent mechanisms. Cardiovasc Res. 2002;55:406–15.
Article
CAS
PubMed
Google Scholar
Brand K, Page S, Rogler G, Bartsch A, Brandl R, Knuechel R, Page M, Kaltschmidt C, Baeuerle PA, Neumeier D. Activated transcription factor nuclear factor kappa B is present in the atherosclerotic lesion. J Clin Invest. 1996;97(7):1715–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cominacini L, Pasini AF, Garbin U, Davoli A, Tosetti ML, Campagnola M, Rigoni A, Pastorino AM, Lo Cascio V, Sawamura T. Oxidized low density lipoprotein (OxLDL) binding to OxLDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. J Biol Chem. 2000;275(17):12633–8.
Article
CAS
PubMed
Google Scholar
Tanigawa H, Miura S, Matsuo Y, Fujino M, Sawamura T, Saku K. Dominant-negative lox-1 blocks homodimerization of wild-type lox-1-induced cell proliferation through extracellular signal regulated kinase 1/2 activation. Hypertension. 2006;48(2):294–300.
Article
CAS
PubMed
Google Scholar
Cominacini L, Garbin U, Fratta Pasini A, Paulon T, Davoli A, Campagnola M, Marchi E, Pastorino AM, Gaviraghi G, Lo CV. Lacidipine inhibits the activation of the transcription factor NF-kappaB and the expression of adhesion molecules induced by pro-oxidant signals on endothelial cells. J Hypertens. 1997;15(12 Pt 2):1633–40.
Article
CAS
PubMed
Google Scholar
Wang G, Woo CW, Sung FL, Siow YL, and O K. Increased monocyte adhesion to aortic endothelium in rats with hyperhomocysteinemia: role of chemokine and adhesion molecules. Arterioscler Thromb Vasc Biol 22: 1777–1783, 2002.
Boyle JJ. Macrophage activation in atherosclerosis: pathogenesis and pharmacology of plaque rupture. Curr Vasc Pharmacol. 2005;3:63–8.
Article
CAS
PubMed
Google Scholar
DiCorleto PE. Cellular mechanisms of atherogenesis. Am J Hypertens. 1993;6:314S–8S.
Article
CAS
PubMed
Google Scholar
Myllarniemi M, Calderon L, Lemstrom K, Buchdunger E, Hayry P. Inhibition of platelet-derived growth factor receptor tyrosine kinase inhibits vascular smooth muscle cell migration and proliferation. FASEB J. 1997;11:1119–26.
Article
CAS
PubMed
Google Scholar
Vinayagamoorthi R, Bobby Z, Sridhar MG. Antioxidants preserve redox balance and inhibit c-Jun-Nterminal kinase pathway while improving insulin signaling in fat-fed rats: evidence for the role of oxidative stress on IRS-1 serine phosphorylation and IR. J Endocrinol. 2008;197:287–96.
Article
CAS
PubMed
Google Scholar
Igarashi M, Hirata A, Yamaguchi H, Tsuchiya H, Ohnuma H, Tominaga M, Daimon M, Kato T. Candesartan inhibits carotid intimal thickening and ameliorates IR in balloon-injured diabetic rats. Hypertension. 2001;38:1255–9.
Article
CAS
PubMed
Google Scholar
Martinet W, Kockx MM. Apoptosis in atherosclerosis:focus on oxidized lipids and inflammation. Curr Opin Lipidol. 2001;12:535–41.
Article
CAS
PubMed
Google Scholar
Hung YC, Hong MY, Huang GS. Cholesterol loading augments oxidative stress in macrophages. FEBS Lett. 2006;580:849–61.
Article
CAS
PubMed
Google Scholar
Wainwright CL. Matrix metalloproteinases, oxidative stress and the acute response to acute myocardial ischaemia and reperfusion. Curr Opin Pharmacol. 2004;4:132–8.
Article
CAS
PubMed
Google Scholar
Libby P. The molecular mechanisms of the thrombotic complications of atherosclerosis. J Intern Med. 2008;263:517–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levitan EB, Song Y, Ford ES, Liu S. Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies. Arch Intern Med. 2004;164(19):2147–55 https://doi.org/10.1001/archinte.164.19.2147.
Article
PubMed
Google Scholar
Sasso FC, Pafundi PC, Marfella R, Calabrò P, Piscione F, Furbatto F, Esposito G, Galiero R, Gragnano F, Rinald L, Salvatore T, D’Amico M, Adinolfi LE, Sardu S. Adiponectin and insulin resistance are related to restenosis and overall new PCI in subjects with normal glucose tolerance: the prospective AIRE Study. Cardiovasc Diabetol. 2019;18:24 https://doi.org/10.1186/s12933-019-0826-0.
Article
PubMed
PubMed Central
Google Scholar
Orbach A, Halon DA, Jaffe R, Rubinshtein R, Karkabi B, Flugelman MY, Zafrir B. Impact of diabetes and early revascularization on the need for late and repeat procedures. Cardiovasc Diabetol. 2018;17(1):25. https://doi.org/10.1186/s12933-018-0669-0.
Komatsu T, Komatsu S, Nakamura H, Kuroyanagi T, Fujikake A, Hisauchi I, Sakuma M, Nakahara S, Sakai Y, Taguchi I. Insulin resistance as a predictor of the late catch-up phenomenon after drug-eluting stent implantation. Circ J. 2016;80(3):657–62. https://doi.org/10.1253/circj.CJ-15-1012
Intine RV, Sarras MP Jr. Metabolic memory and chronic diabetes complications: potential role for epigenetic mechanisms. Curr Diab Rep. 2012;12:551–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gillette TG, Hill JA. Readers, writers, and erasers: chromatin as the whiteboard of heart disease. Circ Res. 2015;116:1245–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barnes SK, Ozanne SE. Pathways linking the early environment to long-term health and lifespan. Prog Biophys Mol Biol. 2011;106:323–36.
Article
CAS
PubMed
Google Scholar
Wegner M, Neddermann D, Piorunska-Stolzmann M, Jagodzinski PP. Role of epigenetic mechanisms in the development of chronic complications of diabetes. Diabetes Res Clin Pract. 2014;105:164–75.
Article
CAS
PubMed
Google Scholar
Keating ST, Plutzky J, El-Osta A. Epigenetic changes in diabetes and cardiovascular risk. Circ Res. 2016;118:1706–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu XY, Geng YJ, Liang JL. High levels of glucose induce “metabolic memory” in cardiomyocyte via epigenetic histone H3 lysine 9 methylation. Mol Biol Rep. 2012;39:8891–8.
Article
CAS
PubMed
Google Scholar
Yu XY, Geng YJ, Liang JL. High levels of glucose induce apoptosis in cardiomyocyte via epigenetic regulation of the insulin-like growth factor receptor. Exp Cell Res. 2010;316:2903–9.
Article
CAS
PubMed
Google Scholar
Dick KJ, Nelson CP, Tsaprouni L. DNA methylation and body-mass index: a genome-wide analysis. Lancet. 2014;383:1990–8.
Article
CAS
PubMed
Google Scholar
Keating ST, El-Osta A. Epigenetics and metabolism. Circ Res. 2015;116:715–36.
Article
CAS
PubMed
Google Scholar
Scholze J, Alegria E, Ferri C, Langham S, Stevens W, et al. Epidemiological and economic burden of metabolic syndrome and its consequences in patients with hypertension in Germany, Spain and Italy; a prevalence-based model. BMC Public Health. 2010;10:529.
Article
PubMed
PubMed Central
Google Scholar
Vancampfort D, Hallgren M, Mugisha J, Hert M, Probst M, Monsieur D, Stubbs B. The Prevalence of Metabolic Syndrome in Alcohol Use Disorders: A Systematic Review and Meta-analysis Alcohol and Alcoholism. 2016; 51(5):515–21.
Goodwin RD, Kim JH, Weinberger AH, et al. Symptoms of alcohol dependence and smoking initiation and persistence: a longitudinal study among US adults. Drug Alcohol Depend. 2013;133:718–23.
Article
PubMed
PubMed Central
Google Scholar
Smothers B, Bertolucci D. Alcohol consumption and healthpromoting behavior in a US household sample: leisure-time physical activity. J Stud Alcohol. 2001;62:467–76.
Whang W, Kubzansky LD, Kawachi I, et al. Depression and risk of sudden cardiac death and coronary heart disease in women: results from the Nurses’ Health Study. J Am Coll Cardiol. 2009;53:950–8.
Article
PubMed
PubMed Central
Google Scholar
Buijsse B, Weikert C, Drogan D, Bergmann M, Boeing H. Chocolate consumption in relation to blood pressure and risk of cardiovascular disease in German adults. Eur Heart J. 2010;31:1616–23.
Article
CAS
PubMed
Google Scholar
Djousse L, Hopkins PN, Arnett DK, Pankow JS, Borecki I, North KE, et al. Chocolate consumption is inversely associated with calcified atherosclerotic plaque in the coronary arteries: the NHLBI Family Heart Study. Clin Nutr. 2011;30:182–7.
Article
PubMed
Google Scholar
Shonkoff JP, Garner AS; Committee on Psychosocial Aspects of Child and Family Health; Committee on Early Childhood, Adoption, and Dependent Care; Section on Developmental and Behavioral Pediatrics. The lifelong effects of early childhood adversity and toxic stress. Pediatrics. 2012;129:e232–e246.
McCullough ML, Bostick RM, Mayo TL. Vitamin D gene pathway polymorphisms and risk of colorectal, breast, and prostate cancer. Annu Rev Nutr. 2009;29:111–32.
Article
CAS
PubMed
Google Scholar
Bahadoran Z, Mirmiran P, Azizi F. Fast Food Pattern and CMD: A Review of Current Studies. Health Promotion Perspectives. 2015;5(4):231–40.
Article
PubMed
Google Scholar
Mazidi M, Speakman J.R. Impact of obesity and ozone on the association between particulate air pollution and cardiovascular disease and stroke mortality among US adults. J Am Heart Assoc. 2018;7(11). https://doi.org/10.1161/JAHA.117.008006.