Sun H, Saeedi P, Karuranga S, et al. IDF diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2021;109119. https://doi.org/10.1016/j.diabres.2021.109119 published online ahead of print, 2021 Nov 24.
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98. https://doi.org/10.1038/nrendo.2017.151.
Article
PubMed
Google Scholar
Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovasc Diabetol. 2018;17(1):83. https://doi.org/10.1186/s12933-018-0728-6.
Article
PubMed
PubMed Central
Google Scholar
Hirata A, Kishida K, Nakatsuji H, Hiuge-Shimizu A, Funahashi T, Shimomura I. High serum S100A8/A9 levels and high cardiovascular complication rate in type 2 diabetics with ultrasonographic low carotid plaque density. Diabetes Res Clin Pract. 2012;97(1):82–90. https://doi.org/10.1016/j.diabres.2012.01.026.
Article
CAS
PubMed
Google Scholar
Wu HK, Zhang Y, Cao CM, et al. Glucose-sensitive Myokine/Cardiokine MG53 regulates systemic insulin response and metabolic homeostasis. Circulation. 2019;139(7):901–14 published correction appears in circulation. 2019 Jul 16;140(3):e160.
Article
CAS
Google Scholar
Hörbelt T, Tacke C, Markova M, et al. The novel adipokine WISP1 associates with insulin resistance and impairs insulin action in human myotubes and mouse hepatocytes. Diabetologia. 2018;61(9):2054–65. https://doi.org/10.1007/s00125-018-4636-9.
Article
CAS
PubMed
Google Scholar
He X, Su J, Ma X, et al. The association between serum growth differentiation factor 15 levels and lower extremity atherosclerotic disease is independent of body mass index in type 2 diabetes. Cardiovasc Diabetol. 2020;19(1):40. Published 2020 Mar 28. https://doi.org/10.1186/s12933-020-01020-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang D, Day EA, Townsend LK, Djordjevic D, Jørgensen SB, Steinberg GR. GDF15: emerging biology and therapeutic applications for obesity and cardiometabolic disease. Nat Rev Endocrinol. 2021;17(10):592–607. https://doi.org/10.1038/s41574-021-00529-7.
Article
CAS
PubMed
Google Scholar
Nakayasu ES, Syed F, Tersey SA, et al. Comprehensive proteomics analysis of stressed human islets identifies GDF15 as a target for type 1 diabetes intervention. Cell Metab. 2020;31(2):363–374.e6. https://doi.org/10.1016/j.cmet.2019.12.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonaterra GA, Zügel S, Thogersen J, et al. Growth differentiation factor-15 deficiency inhibits atherosclerosis progression by regulating interleukin-6-dependent inflammatory response to vascular injury. J Am Heart Assoc. 2012;1(6):e002550. https://doi.org/10.1161/JAHA.112.002550.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ackermann K, Bonaterra GA, Kinscherf R, Schwarz A. Growth differentiation factor-15 regulates oxLDL-induced lipid homeostasis and autophagy in human macrophages. Atherosclerosis. 2019;281:128–36. https://doi.org/10.1016/j.atherosclerosis.2018.12.009.
Article
CAS
PubMed
Google Scholar
Wang J, Wei L, Yang X, Zhong J. Roles of growth differentiation factor 15 in atherosclerosis and coronary artery disease. J Am Heart Assoc. 2019;8(17):e012826. https://doi.org/10.1161/JAHA.119.012826.
Article
PubMed
PubMed Central
Google Scholar
Li J, Yang L, Qin W, Zhang G, Yuan J, Wang F. Adaptive induction of growth differentiation factor 15 attenuates endothelial cell apoptosis in response to high glucose stimulus. PLoS One. 2013;8(6):e65549. Published 2013 Jun 14. https://doi.org/10.1371/journal.pone.0065549.
Article
CAS
PubMed
PubMed Central
Google Scholar
Du Y, Chen J, Chen MH, et al. Relationship of lipid and lipoprotein ratios with coronary severity in patients with new on-set coronary artery disease complicated with type 2 diabetics. J Geriatr Cardiol. 2016;13(8):685–92. https://doi.org/10.11909/j.issn.1671-5411.2016.08.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raj R, Bhatti JS, Badada SK, Ramteke PW. Genetic basis of dyslipidemia in disease precipitation of coronary artery disease (CAD) associated type 2 diabetes mellitus (T2DM). Diabetes Metab Res Rev. 2015;31(7):663–71. https://doi.org/10.1002/dmrr.2630.
Article
CAS
PubMed
Google Scholar
Khatana C, Saini NK, Chakrabarti S, et al. Mechanistic Insights into the Oxidized Low-Density Lipoprotein-Induced Atherosclerosis. Oxidative Med Cell Longev. 2020;2020:5245308. Published 2020 Sep 15. https://doi.org/10.1155/2020/5245308.
Article
CAS
Google Scholar
Ouimet M, Barrett TJ, Fisher EA. HDL and reverse cholesterol transport. Circ Res. 2019;124(10):1505–18. https://doi.org/10.1161/CIRCRESAHA.119.31261.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cesaro A, Schiavo A, Moscarella E, et al. Lipoprotein(a): a genetic marker for cardiovascular disease and target for emerging therapies. J Cardiovasc Med (Hagerstown). 2021;22(3):151–61. https://doi.org/10.2459/JCM.0000000000001077.
Article
CAS
Google Scholar
Gragnano F, Fimiani F, Di Maio M, et al. Impact of lipoprotein(a) levels on recurrent cardiovascular events in patients with premature coronary artery disease. Intern Emerg Med. 2019;14(4):621–5. https://doi.org/10.1007/s11739-019-02082-8.
Article
PubMed
Google Scholar
American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care. 2021;44(Suppl 1):S15–33. https://doi.org/10.2337/dc21-S002 published correction appears in Diabetes Care. 2021 Sep;44(9):2182.
Article
Google Scholar
Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34(28):2159–219. https://doi.org/10.1093/eurheartj/eht151.
Article
PubMed
Google Scholar
Winther S, Schmidt SE, Rasmussen LD, et al. Validation of the European Society of Cardiology pre-test probability model for obstructive coronary artery disease. Eur Heart J. 2021;42(14):1401–11. https://doi.org/10.1093/eurheartj/ehaa755.
Article
PubMed
Google Scholar
Delgado C, Baweja M, Crews DC, et al. A Unifying Approach for GFR Estimation: Recommendations of the NKF-ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease. Am J Kidney Dis. 2021;S0272–6386(21)00828–3. https://doi.org/10.1053/j.ajkd.2021.08.003 published online ahead of print, 2021 Sep 23.
Wilson PW. Diabetes mellitus and coronary heart disease. Am J Kidney Dis. 1998;32(5 Suppl 3):S89–S100. https://doi.org/10.1053/ajkd.1998.v32.pm9820468.
Article
CAS
PubMed
Google Scholar
Adela R, Banerjee SK. GDF-15 as a target and biomarker for diabetes and cardiovascular diseases: a translational prospective. J Diabetes Res. 2015;2015:490842. https://doi.org/10.1155/2015/490842.
Article
PubMed
PubMed Central
Google Scholar
Echouffo-Tcheugui JB, Daya N, Ndumele CE, et al. Diabetes, GDF-15 and incident heart failure: the atherosclerosis risk in communities study. Diabetologia. 2022;65(6):955–63. https://doi.org/10.1007/s00125-022-05678-6.
Article
CAS
PubMed
Google Scholar
Skau E, Henriksen E, Wagner P, Hedberg P, Siegbahn A, Leppert J. GDF-15 and TRAIL-R2 are powerful predictors of long-term mortality in patients with acute myocardial infarction. Eur J Prev Cardiol. 2017;24(15):1576–83. https://doi.org/10.1177/2047487317725017.
Article
PubMed
Google Scholar
Au Yeung SL, Luo S, Schooling CM. The impact of GDF-15, a biomarker for metformin, on the risk of coronary artery disease, breast and colorectal cancer, and type 2 diabetes and metabolic traits: a Mendelian randomisation study. Diabetologia. 2019;62(9):1638–46. https://doi.org/10.1007/s00125-019-4913-2.
Article
CAS
PubMed
Google Scholar
Elsewify WAE, Ashry MA, Elsaied AA, Hassan MH, Ahmed MA, Mahmoud HEM. Validity of B-type natriuretic peptide, growth differentiation factor 15, and high-sensitivity troponin I levels in ischemic heart failure. Clin Lab. 2022;68(5). https://doi.org/10.7754/Clin.Lab.2021.210751.
Girerd N, Cleland J, Anker SD, et al. Inflammation and remodeling pathways and risk of cardiovascular events in patients with ischemic heart failure and reduced ejection fraction. Sci Rep. 2022;12(1):8574. Published 2022 May 20. https://doi.org/10.1038/s41598-022-12385-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ago T, Sadoshima J. GDF15, a cardioprotective TGF-beta superfamily protein. Circ Res. 2006;98(3):294–7. https://doi.org/10.1161/01.RES.0000207919.83894.9d.
Article
CAS
PubMed
Google Scholar
Wu JF, Wang Y, Zhang M, et al. Growth differentiation factor-15 induces expression of ATP-binding cassette transporter A1 through PI3-K/PKCζ/SP1 pathway in THP-1 macrophages. Biochem Biophys Res Commun. 2014;444(3):325–31. https://doi.org/10.1016/j.bbrc.2014.01.048.
Article
CAS
PubMed
Google Scholar
Ho FM, Lin WW, Chen BC, et al. High glucose-induced apoptosis in human vascular endothelial cells is mediated through NF-kappaB and c-Jun NH2-terminal kinase pathway and prevented by PI3K/Akt/eNOS pathway. Cell Signal. 2006;18(3):391–9. https://doi.org/10.1016/j.cellsig.2005.05.009.
Article
CAS
PubMed
Google Scholar
Găman MA, Cozma MA, Dobrică EC, Bacalbașa N, Bratu OG, Diaconu CC. Dyslipidemia: a trigger for coronary heart disease in Romanian patients with diabetes. Metabolites. 2020;10(5):195. Published 2020 May 14. https://doi.org/10.3390/metabo10050195.
Article
CAS
PubMed Central
Google Scholar
Garber AJ. Implications of cardiovascular risk in patients with type 2 diabetes who have abnormal lipid profiles: is lower enough? Diabetes Obes Metab. 2000;2(5):263–70. https://doi.org/10.1046/j.1463-1326.2000.00100.x.
Article
CAS
PubMed
Google Scholar
Eliasson B, Gudbjörnsdottir S, Zethelius B, Eeg-Olofsson K, Cederholm J. National Diabetes Register (NDR). LDL-cholesterol versus non-HDL-to-HDL-cholesterol ratio and risk for coronary heart disease in type 2 diabetes. Eur J Prev Cardiol. 2014;21(11):1420–8. https://doi.org/10.1177/2047487313494292.
Article
PubMed
Google Scholar
Wang M, Wang D, Zhang Y, Wang X, Liu Y, Xia M. Adiponectin increases macrophages cholesterol efflux and suppresses foam cell formation in patients with type 2 diabetes mellitus. Atherosclerosis. 2013;229(1):62–70. https://doi.org/10.1016/j.atherosclerosis.2013.01.017.
Article
CAS
PubMed
Google Scholar
Richardson TG, Sanderson E, Palmer TM, et al. Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: a multivariable Mendelian randomisation analysis. PLoS Med. 2020;17(3):e1003062. Published 2020 Mar 23. https://doi.org/10.1371/journal.pmed.1003062.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomas GS, Cromwell WC, Ali S, Chin W, Flaim JD, Davidson M. Mipomersen, an apolipoprotein B synthesis inhibitor, reduces atherogenic lipoproteins in patients with severe hypercholesterolemia at high cardiovascular risk: a randomized, double-blind, placebo-controlled trial. J Am Coll Cardiol. 2013;62(23):2178–84. https://doi.org/10.1016/j.jacc.2013.07.081.
Article
CAS
PubMed
Google Scholar
van Capelleveen JC, Bochem AE, Boekholdt SM, et al. Association of High-Density Lipoprotein-Cholesterol Versus Apolipoprotein A-I With Risk of Coronary Heart Disease: The European Prospective Investigation Into Cancer-Norfolk Prospective Population Study, the Atherosclerosis Risk in Communities Study, and the Women’s Health Study. J Am Heart Assoc. 2017;6(8):e006636. Published 2017 Aug 3. https://doi.org/10.1161/JAHA.117.006636.
Article
PubMed
PubMed Central
Google Scholar
Bodde MC, Hermans MPJ, Jukema JW, et al. Apolipoproteins A1, B, and apoB/apoA1 ratio are associated with first ST-segment elevation myocardial infarction but not with recurrent events during long-term follow-up. Clin Res Cardiol. 2019;108(5):520–38. https://doi.org/10.1007/s00392-018-1381-5.
Article
CAS
PubMed
Google Scholar