Li C, Wang Y, Liu D, Wong CC, Coker OO, Zhang X, et al. Squalene epoxidase drives cancer cell proliferation and promotes gut dysbiosis to accelerate colorectal carcinogenesis. Gut. 2022;0:1–13.
Google Scholar
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.
Article
CAS
Google Scholar
Font-Burgada J, Sun B, Karin M. Obesity and Cancer: The oil that feeds the flame. Cell Metab. 2016;23:48–62.
Article
CAS
Google Scholar
Ridlon JM, Wolf PG, Gaskins HR. Taurocholic acid metabolism by gut microbes and colon cancer. Gut Microbes. 2016;7:201–15.
Article
CAS
Google Scholar
Liu Z, Gomez CR, Espinoza I, Le TPT, Shenoy V, Zhou X. Correlation of cholesteryl ester metabolism to pathogenesis, progression and disparities in colorectal Cancer. Lipids Health Dis. 2022;21:22.
Article
CAS
Google Scholar
Jun SY, Brown AJ, Chua NK, Yoon JY, Lee JJ, Yang JO, et al. Reduction of squalene epoxidase by cholesterol accumulation accelerates colorectal cancer progression and metastasis. Gastroenterology. 2021;160:1194–207 e28.
Article
CAS
Google Scholar
Feng D, Ohlsson L, Duan RD. Curcumin inhibits cholesterol uptake in Caco-2 cells by down-regulation of NPC1L1 expression. Lipids Health Dis. 2010;9:40.
Article
Google Scholar
Altmann SW, Davis HR Jr, Zhu LJ, Yao X, Hoos LM, Tetzloff G, et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science. 2004;303:1201–4.
Article
CAS
Google Scholar
Preiss D, Tobert JA, Hovingh GK, Reith C. Lipid-Modifying Agents, From statins to PCSK9 inhibitors: JACC focus seminar. J Am Coll Cardiol. 2020;75:1945–55.
Article
CAS
Google Scholar
Hu M, Yang F, Huang Y, You X, Liu D, Sun S, et al. Structural insights into the mechanism of human NPC1L1-mediated cholesterol uptake. Sci Adv. 2021;7:eabg3188.
Article
CAS
Google Scholar
Ojo OA, Adeyemo TR, Rotimi D, Batiha GE, Mostafa-Hedeab G, Iyobhebhe ME, et al. Anticancer properties of curcumin against colorectal cancer: a review. Front Oncol. 2022;12:881641.
Article
Google Scholar
Sahebkar A. Why it is necessary to translate curcumin into clinical practice for the prevention and treatment of metabolic syndrome? BioFactors. 2013;39:197–208.
Article
CAS
Google Scholar
Shah M, Murad W, Mubin S, Ullah O, Rehman NU, Rahman MH. Multiple health benefits of curcumin and its therapeutic potential. Environ Sci Pollut Res Int. 2022;29:43732–44.
Article
CAS
Google Scholar
Salehi B, Stojanovic-Radic Z, Matejic J, Sharifi-Rad M, Anil Kumar NV, Martins N, et al. The therapeutic potential of curcumin: A review of clinical trials. Eur J Med Chem. 2019;163:527–45.
Article
CAS
Google Scholar
Giordano A, Tommonaro G. Curcumin and cancer. Nutrients. 2019;11:2376.
Article
CAS
Google Scholar
Yang Y, Geng HG, Xiong MM, Li M, Su Q, Jia F, et al. Proteomics revealed the crosstalk between copper stress and cuproptosis, and explored the feasibility of curcumin as anticancer copper ionophore. Free Radic Biol Med. 2022. doi:http://doi.org/10.1016/j.freeradbiomed.2022.11.023.
Wilken R, Veena MS, Wang MB, Srivatsan ES. Curcumin. A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer. 2011;10:12.
Article
CAS
Google Scholar
Ruiz de Porras V, Layos L, Martinez-Balibrea E, Curcumin. A therapeutic strategy for colorectal cancer? Semin Cancer Biol. 2021;73:321–30.
Article
CAS
Google Scholar
Zou J, Zhang S, Li P, Zheng X, Feng D. Supplementation with curcumin inhibits intestinal cholesterol absorption and prevents atherosclerosis in high-fat diet-fed apolipoprotein E knockout mice. Nutr Res. 2018;56:32–40.
Article
CAS
Google Scholar
Kang Q, Chen A. Curcumin inhibits SREBP-2 expression in activated hepatic stellate cells in vitro by reducing the activity of specificity protein-1. Endocrinology. 2009;150:5384–94.
Article
CAS
Google Scholar
Feng D, Zou J, Zhang S, Li X, Lu M. Hypocholesterolemic activity of curcumin is mediated by down-regulating the expression of niemann-pick c1-like 1 in hamsters. J Agric Food Chem. 2017;65:276–80.
Article
CAS
Google Scholar
Leamy AW, Shukla P, McAlexander MA, Carr MJ, Ghatta S. Curcumin ((E,E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) activates and desensitizes the nociceptor ion channel TRPA1. Neurosci Lett. 2011;503:157–62.
Article
CAS
Google Scholar
Nalli M, Ortar G, Schiano Moriello A, Di Marzo V, De Petrocellis L. Effects of curcumin and curcumin analogues on TRP channels. Fitoterapia. 2017;122:126–31.
Article
CAS
Google Scholar
Shi H, Halvorsen YD, Ellis PN, Wilkison WO, Zemel MB. Role of intracellular calcium in human adipocyte differentiation. Physiol Genomics. 2000;3:75–82.
Article
CAS
Google Scholar
Trujillo-Viera J, El-Merahbi R, Schmidt V, Karwen T, Loza-Valdes A, Strohmeyer A, et al. Protein Kinase D2 drives chylomicron-mediated lipid transport in the intestine and promotes obesity. EMBO Mol Med. 2021;13:e13548.
Article
CAS
Google Scholar
Reaver A, Hewlings S, Westerman K, Blander G, Schmeller T, Heer M, et al. A randomized, placebo-controlled, double-blind crossover study to assess a unique phytosterol ester formulation in lowering LDL cholesterol utilizing a novel virtual tracking tool. Nutrients. 2019;11:2108.
Article
CAS
Google Scholar
Grasset E, Pinto M, Dussaulx E, Zweibaum A, Desjeux JF. Epithelial properties of human colonic carcinoma cell line Caco-2: electrical parameters. Am J Physiol. 1984;247:C260-7.
Article
Google Scholar
Moreno P, Fexova S, George N, Manning JR, Miao Z, Mohammed S, et al. Expression Atlas update: gene and protein expression in multiple species. Nucleic Acids Res. 2022;50:D129-D40.
Article
Google Scholar
Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7.
Article
CAS
Google Scholar
Li Y, Wu S. Curcumin inhibits the proteolytic process of SREBP-2 by first inhibiting the expression of S1P rather than directly inhibiting SREBP-2 expression. Food Sci Nutr. 2021;9:209–16.
Article
CAS
Google Scholar
Cai L, Eckhardt ER, Shi W, Zhao Z, Nasser M, de Villiers WJ, et al. Scavenger receptor class B type I reduces cholesterol absorption in cultured enterocyte CaCo-2 cells. J Lipid Res. 2004;45:253–62.
Article
CAS
Google Scholar
Eckhardt ER, Wang DQ, Donovan JM, Carey MC. Dietary sphingomyelin suppresses intestinal cholesterol absorption by decreasing thermodynamic activity of cholesterol monomers. Gastroenterology. 2002;122:948–56.
Article
CAS
Google Scholar
Jiang L, Cai X, Li S, Miao Y, Yang X, Lin M, et al. Hydroxyethyl starch curcumin enhances antiproliferative effect of curcumin against HepG2 cells via apoptosis and autophagy induction. Front Pharmacol. 2021;12:755054.
Article
Google Scholar
Niu Y, Lin Z, Wan A, Chen H, Liang H, Sun L, et al. RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. Mol Cancer. 2019;18:46.
Article
Google Scholar
Krishnan V, Baskaran P, Thyagarajan B. Troglitazone activates TRPV1 and causes deacetylation of PPARgamma in 3T3-L1 cells. Biochim Biophys Acta Mol Basis Dis. 2019;1865:445–53.
Article
CAS
Google Scholar
Wang M, Zhang Y, Xu M, Zhang H, Chen Y, Chung KF, et al. Roles of TRPA1 and TRPV1 in cigarette smoke -induced airway epithelial cell injury model. Free Radic Biol Med. 2019;134:229–38.
Article
CAS
Google Scholar
Chen L, Li M, Zhou H, Liu Y, Pang W, Ma T, et al. Sirtuin1 (SIRT1) is involved in the anticancer effect of black raspberry anthocyanins in colorectal cancer. Eur J Nutr. 2022. doi:http://doi.org/10.1007/s00394-022-02989-7.
Lin AH, Liu MH, Ko HK, Perng DW, Lee TS, Kou YR. Lung epithelial TRPA1 transduces the extracellular ros into transcriptional regulation of lung inflammation induced by cigarette smoke: the role of influxed Ca(2)(+). Mediators Inflamm. 2015;2015:148367.
Article
Google Scholar
Panahi Y, Saberi-Karimian M, Valizadeh O, Behnam B, Saadat A, Jamialahmadi T, et al. Effects of curcuminoids on systemic inflammation and quality of life in patients with colorectal cancer undergoing chemotherapy: a randomized controlled trial. Adv Exp Med Biol. 2021;1328:1–9.
Article
Google Scholar
Startek JB, Boonen B, Lopez-Requena A, Talavera A, Alpizar YA, Ghosh D, et al. Mouse TRPA1 function and membrane localization are modulated by direct interactions with cholesterol. Elife. 2019;8:e46084.
Article
Google Scholar
Fothergill LJ, Callaghan B, Rivera LR, Lieu T, Poole DP, Cho HJ, et al. Effects of food components that activate TRPA1 receptors on mucosal ion transport in the mouse intestine. Nutrients. 2016;8:623.
Article
Google Scholar
Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell. 2006;124:1269–82.
Article
CAS
Google Scholar
Li B, Ren S, Gao D, Li N, Wu M, Yuan H, et al. Photothermal conjugated polymer nanoparticles for suppressing breast tumor growth by regulating TRPA1 ion channels. Adv Healthc Mater. 2022;11:e2102506.
Article
Google Scholar
Schaefer EA, Stohr S, Meister M, Aigner A, Gudermann T, Buech TR. Stimulation of the chemosensory TRPA1 cation channel by volatile toxic substances promotes cell survival of small cell lung cancer cells. Biochem Pharmacol. 2013;85:426–38.
Article
CAS
Google Scholar
Kiss F, Kormos V, Szoke E, Kecskes A, Toth N, Steib A, et al. Functional transient receptor potential ankyrin 1 and vanilloid 1 ion channels are overexpressed in human oral squamous cell carcinoma. Int J Mol Sci. 2022;23:1921.
Article
CAS
Google Scholar
Liao S, Xia J, Chen Z, Zhang S, Ahmad A, Miele L, et al. Inhibitory effect of curcumin on oral carcinoma CAL-27 cells via suppression of Notch-1 and NF-kappaB signaling pathways. J Cell Biochem. 2011;112:1055–65.
Article
CAS
Google Scholar
Liu K, Stamler J, Moss D, Garside D, Persky V, Soltero I. Dietary cholesterol, fat, and fibre, and colon-cancer mortality. An analysis of international data. Lancet. 1979;2:782–5.
Article
CAS
Google Scholar
Zhang X, Zhao XW, Liu DB, Han CZ, Du LL, Jing JX, et al. Lipid levels in serum and cancerous tissues of colorectal cancer patients. World J Gastroenterol. 2014;20:8646–52.
Article
Google Scholar
Notarnicola M, Altomare DF, Correale M, Ruggieri E, D'Attoma B, Mastrosimini A, et al. Serum lipid profile in colorectal cancer patients with and without synchronous distant metastases. Oncology. 2005;68:371–4.
Article
CAS
Google Scholar
Zhang Y, Wu K, Chan AT, Meyerhardt JA, Giovannucci EL. Long-term statin use, total cholesterol level, and risk of colorectal cancer: a prospective cohort study. Am J Gastroenterol. 2022;117:158–66.
Article
Google Scholar
Wang B, Rong X, Palladino END, Wang J, Fogelman AM, Martin MG, et al. Phospholipid remodeling and cholesterol availability regulate intestinal stemness and tumorigenesis. Cell Stem Cell. 2018;22:206–20 e4.
Article
CAS
Google Scholar
Zhao JF, Shyue SK, Kou YR, Lu TM, Lee TS. Transient receptor potential ankyrin 1 channel involved in atherosclerosis and macrophage-foam cell formation. Int J Biol Sci. 2016;12:812–23.
Article
CAS
Google Scholar
Su D, Lv C. Hydroxysafflor yellow A inhibits the proliferation, migration, and invasion of colorectal cancer cells through the PPARgamma/PTEN/Akt signaling pathway. Bioengineered. 2021;12:11533–43.
Article
CAS
Google Scholar
Chen CC, Sureshbabul M, Chen HW, Lin YS, Lee JY, Hong QS, et al. Curcumin suppresses metastasis via Sp-1, FAK Inhibition, and e-cadherin upregulation in colorectal cancer. Evid Based Complement Alternat Med. 2013;2013:541695.
Google Scholar
Kwon RJ, Park EJ, Lee SY, Lee Y, Hwang C, Kim C, et al. Expression and prognostic significance of Niemann-Pick C1-Like 1 in colorectal cancer: a retrospective cohort study. Lipids Health Dis. 2021;20:104.
Article
CAS
Google Scholar
He J, Shin H, Wei X, Kadegowda AK, Chen R, Xie SK. NPC1L1 knockout protects against colitis-associated tumorigenesis in mice. BMC Cancer. 2015;15:189.
Article
Google Scholar
Bjur E, Larsson O, Yurchenko E, Zheng L, Gandin V, Topisirovic I, et al. Distinct translational control in CD4 + T cell subsets. PLoS Genet. 2013;9:e1003494.
Article
CAS
Google Scholar
Flora G, Gupta D, Tiwari A. Nanocurcumin: a promising therapeutic advancement over native curcumin. Crit Rev Ther Drug Carrier Syst. 2013;30:331–68.
Article
CAS
Google Scholar
Idoudi S, Bedhiafi T, Hijji YM, Billa N. Curcumin and derivatives in nanoformulations with therapeutic potential on colorectal cancer. AAPS PharmSciTech. 2022;23:115.
Article
CAS
Google Scholar
Bantscheff M, Scholten A, Heck AJ. Revealing promiscuous drug-target interactions by chemical proteomics. Drug Discov Today. 2009;14:1021–9.
Article
CAS
Google Scholar